OpenCV-Python中的图像处理-霍夫变换

OpenCV-Python中的图像处理-霍夫变换

  • 霍夫变换
    • 霍夫直线变换
    • 霍夫圆环变换

霍夫变换

  • 霍夫(Hough)变换在检测各种形状的技术中非常流行,如果要检测的形状可以用数学表达式描述,就可以是使用霍夫变换检测它。即使要检测的形状存在一点破坏或者扭曲也是可以使用。

霍夫直线变换

  1. Hough直线变换,可以检测一张图像中的直线
  2. cv2.HoughLines(image, rho, theta, threshold)
    • return:返回值就是( ρ, θ)。 ρ 的单位是像素, θ 的单位是弧度。
    • image:是一个二值化图像,所以在进行霍夫变换之前要首先进行二值化,或者进行Canny 边缘检测。
    • rho:代表 ρ 的精确度。
    • theta:代表θ 的精确度。
    • threshold:阈值,只有累加其中的值高于阈值时才被认为是一条直线,也可以把它看成能检测到的直线的最短长度(以像素点为单位)。
  3. cv2.HoughLinesP(image: Mat, rho, theta, threshold, lines=…, minLineLength=…, maxLineGap=…)
    • return :返回值就是直线的起点和终点(x1,y1,x2,y2)。
    • rho:代表 ρ 的精确度。
    • theta:代表θ 的精确度。
    • threshold:阈值,只有累加其中的值高于阈值时才被认为是一条直线,也可以把它看成能检测到的直线的最短长度(以像素点为单位)。
    • minLineLength:直线的最短长度。比这个短的线都会被忽略。
    • maxLineGap- 两条线段之间的最大间隔,如果小于此值,这两条直线就被看成是一条直线。
  4. 一条直线可以用数学表达式 y = mx + c 或者 ρ = x cos θ + y sin θ 表示。ρ 是从原点到直线的垂直距离, θ 是直线的垂线与横轴顺时针方向的夹角(如果使用的坐标系不同,方向也可能不同,这里是按 OpenCV 使用的坐标系描述的)。如下图所示:
    在这里插入图片描述
import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/sudoku.png', cv2.IMREAD_COLOR)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150, apertureSize=3)lines = cv2.HoughLines(edges, 1, np.pi/180, 200)for i in range(len(lines)):
# for rho, thetha in lines[10]:rho = lines[i][0][0]thetha = lines[i][0][1]a = np.cos(thetha)b = np.sin(thetha)x0 = a*rhoy0 = b*rholine_length = 1000 # 线长x1 = int(x0 + line_length*(-b))y1 = int(y0 + line_length*(a))x2 = int(x0 - line_length*(-b))y2 = int(y0 - line_length*(a))cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 1)# 因为gray和edges都是单通道的,为了可以和原图拼接合并,需要merge成3通道图像数据
gray = cv2.merge((gray, gray, gray))
edges = cv2.merge((edges,edges,edges))# 图像拼接
res = np.hstack((gray,edges,img))cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
渐进概率式霍夫变换
cv2.HoughLinesP(image: Mat, rho, theta, threshold, lines=…, minLineLength=…, maxLineGap=…)

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/sudoku.png', cv2.IMREAD_COLOR)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny = cv2.Canny(gray, 50, 150, apertureSize=3)minLineLength = 100
maxLineGap = 10
# HoughLinesP(image: Mat, rho, theta, threshold, lines=..., minLineLength=..., maxLineGap=...) 
lines = cv2.HoughLinesP(canny, 1, np.pi/180, 100, minLineLength, maxLineGap)print(lines.shape)
print(lines[0])for i in range(len(lines)):for x1,y1,x2,y2 in lines[i]:cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 1)gray = cv2.merge((gray, gray, gray))
canny = cv2.merge((canny,canny,canny))res = np.hstack((gray, canny, img))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
在含有坐标点集合中寻找是否存在直线:
cv2.HoughLinesPointSet(_point, lines_max, threshold, min_rho, max_rho, rho_step, min_theta, max_theta, theta_step, _lines=…)

  • _point:输入点的集合,必须是平面内的2D坐标,数据类型必须是CV_32FC2或CV_32SC2。
  • lines_max:检测直线的最大数目。
  • threshold:累加器的阈值,即参数空间中离散化后每个方格被通过的累计次数大于阈值时则被识别为直线,否则不被识别为直线。
  • min_rho:检测直线长度的最小距离,以像素为单位。
  • max_rho:检测直线长度的最大距离,以像素为单位。
  • rho_step::以像素为单位的距离分辨率,即距离 离散化时的单位长度。
  • min_theta:检测直线的最小角度值,以弧度为单位。
  • max_theta:检测直线的最大角度值,以弧度为单位。
  • theta_step:以弧度为单位的角度分辨率,即夹角 离散化时的单位角度。
  • _lines:在输入点集合中可能存在的直线,每一条直线都具有三个参数,分别是权重、直线距离坐标原点的距离 和坐标原点到直线的垂线与x轴的夹角 。

霍夫圆环变换

  1. 圆形的数学表达式为 (x − xcenter)2+(y − ycenter)2 = r2,其中( xcenter,ycenter)为圆心的坐标, r 为圆的直径。从这个等式中我们可以看出:一个圆环需要 3个参数来确定。所以进行圆环霍夫变换的累加器必须是 3 维的,这样的话效率就会很低。所以 OpenCV 用来一个比较巧妙的办法,霍夫梯度法,它可以使用边界的梯度信息。
  2. cv2.HoughCircles(image, method, dp, minDist, circles=…, param1=…, param2=…, minRadius=…, maxRadius=…)
    • return:存储检测到的圆的输出矢量。
    • image:输入图像,数据类型一般用Mat型即可,需要是8位单通道灰度图像
    • method:使用的检测方法,cv2.HOUGH_GRADIENT,cv2.HOUGH_GRADIENT_ALT。
    • dp:double类型的dp,用来检测圆心的累加器图像的分辨率于输入图像之比的倒数,且此参数允许创建一个比输入图像分辨率低的累加器。上述文字不好理解的话,来看例子吧。例如,如果dp= 1时,累加器和输入图像具有相同的分辨率。如果dp=2,累加器便有输入图像一半那么大的宽度和高度。
    • minDist:为霍夫变换检测到的圆的圆心之间的最小距离。
    • circles:可以忽略,存储检测到的圆的输出矢量。
    • param1:它是第三个参数method设置的检测方法的对应的参数。它表示传递给canny边缘检测算子的高阈值,而低阈值为高阈值的一半。
    • param2:也是第三个参数method设置的检测方法的对应的参数,它表示在检测阶段圆心的累加器阈值。它越小的话,就可以检测到更多根本不存在的圆,而它越大的话,能通过检测的圆就更加接近完美的圆形了。
    • minRadius:表示圆半径的最小值。
    • maxRadius:表示圆半径的最大值。
import numpy as np
import cv2img = cv2.imread('./resource/opencv/image/logo/opencv-logo2.png', cv2.IMREAD_GRAYSCALE)
img = cv2.medianBlur(img, 5)
cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=30, minRadius=30, maxRadius=0)print(circles)
circles = np.uint16(circles)
print(circles)for i in circles[0, :]:cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)cv2.circle(cimg, (i[0], i[1]), 2, (0, 0, 255), 3)cv2.imshow('detected circles', cimg)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/39245.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【1day】复现大华智慧园区综合管理平台SQL注入漏洞

目录 一、漏洞描述 二、影响版本 三、资产测绘 四、漏洞复现 一、漏洞描述 大华智慧园区综合管理平台是一个集智能化、信息化、网络化、安全化为一体的智慧园区管理平台,旨在为园区提供一站式解决方案,包括安防、能源管理、环境监测、人员管理、停车管理等多个方面。大华…

【C/C++】关于C++构造函数成员初始化

文章目录 1. 第一种方式2. 第二种方式3. 优劣 1. 第一种方式 成员初始化列表。在构造函数的参数列表后使用冒号分割的一组初始化语句。 class my_class { public:my_class(int a, int b): m_x(a), m_y(b) {/*....*/} private:int m_x;int m_y; };2. 第二种方式 在构造函数内…

【skynet】skynet 服务间通信

写在前面 skynet 服务之间有自己的一套高效通信 API 。本文给出简单的示例。 文章目录 写在前面准备工作编写代码运行结果 准备工作 首先要有一个编译好,而且工作正常的 skynet 。 编写代码 在 skynet/example 目录编写一个配置文件,两个代码文件。 …

(7)(7.1) 使用航点和事件规划任务

文章目录 前言 7.1.1 设置Home位置 7.1.2 视频:制作并保存多路点任务 7.1.3 视频:加载已保存的多航点任务 7.1.4 使用说明 7.1.5 提示 7.1.6 自动网格 7.1.7 任务指令 7.1.8 任务结束 7.1.9 任务重置 7.1.10 MIS_OPTIONS 7.1.11 任务再出发 …

renderdoc源码分析(四) 重放

//TODO 先贴下飞书文档,后续找时间再整理到这 Docs

04 - 分离头指针情况、理解HEAD和branch

查看所有文章链接:(更新中)GIT常用场景- 目录 文章目录 1. 分离头指针2. HEAD和branch2.1 branch的一些操作2.2 HEAD 1. 分离头指针 分离头指针detached HEAD是一种HEAD指针指向了某一个具体的 commit id,而不是分支的情况。 切换…

springboot 使用zookeeper实现分布式ID

添加ZooKeeper依赖&#xff1a;在pom.xml文件中添加ZooKeeper客户端的依赖项。例如&#xff0c;可以使用Apache Curator作为ZooKeeper客户端库&#xff1a; <dependency><groupId>org.apache.curator</groupId><artifactId>curator-framework</arti…

Faiss在windows下安装和使用

pip install faiss-cpu 直接安装可能出现问题&#xff1a; error: command swig.exe failed: No such file or directory 安装swig即可解决&#xff0c;安装方式

学习Vue:Event Bus 与 Provide/Inject

在Vue.js中&#xff0c;兄弟组件通信是指两个没有直接父子关系的组件之间如何进行数据传递和通信。为了实现兄弟组件通信&#xff0c;我们可以借助Vue的一些特性&#xff0c;如Event Bus和Provide/Inject。让我们一起来深入了解这些方法&#xff0c;并通过实例来看看如何实现兄…

服务器如何防止cc攻击

对于搭载网站运行的服务器来说&#xff0c;cc攻击应该并不陌生&#xff0c;特别是cc攻击的攻击门槛非常低&#xff0c;有个代理IP工具&#xff0c;有个cc攻击软件就可以轻易对任何网站发起攻击&#xff0c;那么服务器如何防止cc攻击?请看下面的介绍。 服务器如何防止cc攻击&a…

希尔排序【Java算法】

文章目录 1. 概念2. 思路3. 代码实现 1. 概念 希尔排序也是一种插入排序&#xff0c;它是简单插入排序经过改进之后的一个更高效的版本&#xff0c;也称为缩小增量排序。希尔排序在数组中采用跳跃式分组的策略&#xff0c;通过某个增量将数组元素划分为若干组&#xff0c;然后分…

iOS学习—制作全局遮罩

在.h文件中线声明show()方法 - (void)show; .m文件中添加全屏遮罩&#xff0c;在遮罩上添加了一个选择框并添加了底部弹出的动画&#xff0c;可自行在其中添加tableview、pickerview等其他视图&#xff0c;并添加了点击选择框视图外区域隐藏 #import "MaskView.h"…

Java:PO、VO、BO、DO、DAO、DTO、POJO

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; Java&#xff1a;PO、VO、BO、DO、DAO、DTO、POJO PO持久化对象&#xff08;Persistent Object&#xff09; PO是持久化对象&#xff0c;用于表示数据库中的实体或表…

tauri-vue:快速开发跨平台软件的架子,支持自定义头部UI拖拽移动和窗口阴影效果

Tauri Vue Typescript 一个使用 taurivuets 开发跨平台软件的模板&#xff0c;支持窗口头部自定义 UI 和拖拽和窗口阴影&#xff0c;不用再自己做适配了&#xff0c;拿来即用&#xff0c;非常 nice。而且已经封装好了 tauri 的 http 请求工具&#xff0c;省去很多弯路。开源…

分布式 - 消息队列Kafka:Kafka消费者分区再均衡(Rebalance)

文章目录 01. Kafka 消费者分区再均衡是什么&#xff1f;02. Kafka 消费者分区再均衡的触发条件&#xff1f;03. Kafka 消费者分区再均衡的过程&#xff1f;04. Kafka 如何判定消费者已经死亡&#xff1f;05. Kafka 如何避免消费者的分区再均衡?06. Kafka 消费者分区再均衡有什…

UglifyJS 和JShaman相比有什么不同?都可以进行js混淆加密吗?

UglifyJS 和JShaman相比有什么不同&#xff1f; UglifyJS主要功能是压缩JS代码&#xff0c;减小代码体积&#xff1b;JShaman是专门用于对JS代码混淆加密&#xff0c;目的是让JS代码变的不可读、混淆功能逻辑、加密代码中的隐秘数据或字符&#xff0c;是用于代码保护的。 因此…

java.lang.NoClassDefFoundError: org/apache/tez/dag/api/TezConfiguration

错误&#xff1a; java.lang.NoClassDefFoundError: org/apache/tez/dag/api/TezConfigurationat org.apache.hadoop.hive.ql.exec.tez.TezSessionPoolSession$AbstractTriggerValidator.startTriggerValidator(TezSessionPoolSession.java:74)at org.apache.hadoop.hive.ql.e…

音视频技术开发周刊 | 306

每周一期&#xff0c;纵览音视频技术领域的干货。 新闻投稿&#xff1a;contributelivevideostack.com。 人工智能研究人员声称&#xff0c;通过Zoom音频检测击键的准确率为93% 通过记录按键并训练深度学习模型&#xff0c;三位研究人员声称&#xff0c;基于单个按键的声音特征…

eclipse 导入项目js报错问题

eclipse 导入项目后会出现项目中的js文件报错&#xff08;红叉&#xff09;&#xff0c;如下图所示&#xff0c;有时候报错的文件很多&#xff0c;需要集中处理。 解决办法&#xff1a; 右键项目名称》Properties》MyEclipse》JavaScript》Include Path&#xff0c;在右侧选择“…

vim键盘图

国外&#xff1a;http://www.viemu.com/a_vi_vim_graphical_cheat_sheet_tutorial.html&#xff0c;原创&#xff0c;有SVG图&#xff0c;有分步骤的图。 国内翻译&#xff1a;[https://blog.csdn.net/qq_41052753/article/details/101031847 有几个配色&#xff0c;很高清&…