100米队伍,从队伍后到前_我们的队伍

100米队伍,从队伍后到前

The last twelve months have brought us a presidential impeachment trial, the coronavirus pandemic, sweeping racial justice protests triggered by the death of George Floyd, and a critical presidential election. News coverage of these events shapes popular reaction and popular reaction shapes policy. But until recently, people haven’t had the data to talk about news coverage.

在过去的十二个月中,我们进行了总统弹trial审判,冠状病毒大流行,乔治·弗洛伊德(George Floyd)逝世引发的全面种族主义抗议,以及关键的总统选举。 这些事件的新闻报道影响着民众的React,而民众的React也影响着政策。 但是直到最近,人们还没有关于新闻报道的数据。

How much coverage does Trump receive compared to Biden? How did this change when coronavirus and the George Floyd protests came into the picture? Now, just weeks before a historic election, what is front and center in the news?

与拜登市相比,特朗普可以获得多少承保? 当冠状病毒和乔治·弗洛伊德(George Floyd)抗议活动出现时,这种情况如何变化? 现在,就在历史性大选前几周,新闻的前沿和中心是什么?

Previously, acquiring data about cable news content meant meticulously and manually coding hours of news coverage by hand. The Stanford Cable TV News Analyzer provides easy access to this information by giving you the ability to not just search transcripts, but also compute the screen time of public figures in nearly 24–7 broadcasts from CNN, Fox News, and MSNBC.

以前,获取有关有线新闻内容的数据意味着手工精心地手工编码新闻报道的小时数。 斯坦福有线电视新闻分析器使您不仅可以搜索成绩单,还可以计算来自CNN,Fox News和MSNBC的近24-7广播中公众人物的放映时间,从而可以轻松访问此信息。

Let’s take a closer look at what cable news has talked about in 2020.

让我们仔细看看2020年有线新闻谈论了什么。

我们在弹trial审判之前,期间和之后谈论了特朗普……直到冠状病毒出现 (We talked about Trump before, during, and after the impeachment trial… until the coronavirus came along)

In early 2020, mentions of “Trump” (red line in the graph above) were high before, during, and after President Trump’s senate impeachment trial (Jan 16 to Feb 5). However, the emergence of coronavirus (green) coincided with a significant drop in mentions of “Trump”. Trump mentions have still not returned to their February levels.

在2020年初,特朗普总统参议院弹each案审判(1月16日至2月5日)之前,期间和之后,都提到“特朗普”(上图中的红线)。 但是,冠状病毒(绿色)的出现与“特朗普”的提及大幅下降同时发生。 特朗普的提及仍未回到2月份的水平。

2020年的最大高峰与拜登有关 (The biggest spikes of 2020 are related to Biden)

Joe Biden’s dominance of the Super Tuesday races in early March, and his nomination of Kamala Harris as VP running mate in mid August, led to spikes in mentions of “Biden” (blue) that exceeded the daily keyword counts of other major events. (These spikes occurred on all three channels.) Also evident is the near disappearance of “Biden” mentions in late March as the coronavirus took hold around the country.

乔·拜登(Joe Biden)在3月初的“超级星期二”比赛中独占min头,并在8月中旬提名卡马拉·哈里斯(Kamala Harris)担任跑步副队长,导致提到“拜登”(蓝色)的人数激增,超过了其他重大赛事的每日关键词数量。 (这些尖峰出现在所有三个通道上 。)3月底,随着冠状病毒在全国各地蔓延,“拜登”提到的内容几乎消失了。

种族不公正现象在6月初成为新闻焦点,然后逐渐消失 (Racial injustice dominated the news in early June, then faded)

Mentions of words related to racial injustice and the George Floyd protests in late May/early June (yellow) reached a peak in early June that was higher than that of coronavirus at any point in 2020. Words related to this topic still get mentioned at a much higher rate than prior to the protests, but have been slowly declining since.

与种族不公有关的言论以及5月下旬/ 6月上旬(黄色)的乔治·弗洛伊德(George Floyd)抗议活动在6月初达到顶峰,在2020年的任何时候都高于冠状病毒。比抗议前的比率高得多,但此后一直在缓慢下降。

谁在谈论谁在屏幕上 (Who is talked about vs. who is on screen)

The graph above showed how often “Trump” and “Biden” were mentioned in cable news transcripts — the amount of time their face appears on screen paints a different picture. While mentions of “Trump” were low during the initial wave of coronavirus coverage in March and April, Trump’s face was on screen more than at any time in his presidency during this period due to the White House’s daily coronavirus briefings.

上图显示了有线电视新闻记录中“特朗普”和“拜登”被提及的频率-他们的脸出现在屏幕上的时间描绘了一幅不同的图画。 在三月和四月的第一轮冠状病毒报道期间,对“特朗普”的提及很少,但特朗普当选总统的脸比任何时候都多 在此期间,由于白宫每天都会发布冠状病毒简报。

Image for post
view interactive chart). Right: A comparison of screen time shows that while Biden’s screen time was low during this period, Trump was on screen more than at any other point in 2020 (查看互动图表 )。 右图:放映时间的比较显示,虽然在此期间拜登的放映时间很短,但特朗普的放映时间比2020年的其他任何时候都要多( view interactive chart).查看互动图表 )。

自己尝试一下 (Try it out yourself)

The Stanford TV News Analyzer provides an easy way to measure the representation of people and events on cable news. The site is updated with the latest broadcasts each day, and now includes near 24–7 broadcasts of CNN, Fox News, and MSNBC beginning on January 1, 2010 (over 270,000 hours of video). We encourage you to use its transcript search and screen time measurement features to ask your own questions, like:

斯坦福电视新闻分析器提供了一种简便的方法来衡量有线新闻中人物和事件的代表性。 该网站每天都会更新为最新广播,现在包括从2010年1月1日开始的近24–7次CNN,Fox News和MSNBC广播(超过270,000个小时的视频)。 我们鼓励您使用其笔录搜索和屏幕时间测量功能来提出自己的问题,例如:

  • Does coverage of political candidates lead or lag the polls?

    政治候选人的报道是领先还是落后于民意调查?

  • On which channels do controversial phrases like “Chinese coronavirus” first appear? (Tucker Carlson was first on January 23rd, but anchors on all three channels used the term in the same week).

    有争议的短语(例如“中国冠状病毒”)首先出现在哪些渠道? (塔克·卡尔森(Tucker Carlson)最早是在1月23日,但所有三个频道的主持人在同一周都使用了该术语)。

  • What is the breakdown of screen time by gender on the most popular cable news programs?

    在最受欢迎的有线新闻节目中,按性别细分的屏幕时间是多少?

We invite you to our Getting Started page and our explainer article to learn more about how to measure the contents of cable news yourself.

我们邀请您访问“ 入门”页面和解释文章,以了解有关如何自己衡量有线新闻内容的更多信息。

In the coming weeks we will be releasing a series of analyses that use the Stanford Cable TV Analyzer to inspect issues such as gender representation on cable news and coverage of the upcoming 2020 election. For now, you can find more information about our mission and the Stanford Cable TV News Analyzer on our Frequently Asked Questions page, and our technical report.

在未来几周内,我们将发布一系列使用斯坦福有线电视分析仪的分析报告,以检查诸如有线电视新闻中的性别代表以及即将到来的2020年大选的报道等问题。 目前,您可以在我们的常见问题页面和技术报告中找到有关我们的使命和斯坦福有线电视新闻分析器的更多信息。

We understand that the Stanford Cable TV News Analyzer is only as powerful as the questions that people answer with it. So journalists, media critics, and armchair data scientists out there… we want to work with you to get to the bottom of things. We are excited to enable you to approach news analysis and news monitoring in a large-scale and data-driven way.

我们了解到,斯坦福有线电视新闻分析器的功能与人们用它回答的问题一样强大。 因此,记者,媒体评论家和扶手椅数据科学家在那里……我们希望与您一起深入浅出。 我们很高兴能够使您以大规模和数据驱动的方式进行新闻分析和新闻监视。

我们的队伍 (Our Team)

Student research assistants, Stanford University: James Hong (student lead), Jacob Ritchie, Jeremy Barenholtz, Will Crichton, Daniel Fu, Ben Hannel, Michaela Murray, Xinwei Yao, Haotian Zhang

斯坦福大学学生研究助理:詹姆斯·洪(学生主任),雅各布·里奇,杰里米·巴伦霍兹,威尔·克莱顿,丹尼尔·富,本·汉纳尔,米歇拉·默里,姚新伟,张皓天

Maneesh Agrawala: Forest Baskett Professor Computer Science and Director of the Brown Institute for Media Innovation at Stanford University

Maneesh Agrawala :Forest Baskett计算机科学教授,斯坦福大学布朗媒体创新研究所所长

Kayvon Fatahalian: Assistant Professor of Computer Science, Stanford University

Kayvon Fatahalian :斯坦福大学计算机科学助理教授

Geraldine Moriba: Journalist, documentary filmmaker, broadcast news executive, and former John S. Knight Journalism fellow

杰拉尔丁·莫里巴(Geraldine Moriba):新闻记者,纪录片制片人,广播新闻执行官,前约翰·奈特新闻工作者

Acknowledgments: The Stanford Cable TV News Analyzer is a collaboration between Stanford University’s Computer Science Department, the Brown Institute for Media Innovation, and the Internet Archive.

致谢:斯坦福有线电视新闻分析器是由斯坦福大学计算机科学系, 布朗媒体创新研究所 Internet档案馆之间的合作

翻译自: https://medium.com/tvnewsanalyzer/270-000-hours-of-news-at-your-fingertips-bd9f68f3b9dc

100米队伍,从队伍后到前

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/391626.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

idea使用 git 撤销commit

2019独角兽企业重金招聘Python工程师标准>>> 填写commit的id 就可以取消这一次的commit 转载于:https://my.oschina.net/u/3559695/blog/1596669

mongodb数据可视化_使用MongoDB实时可视化开放数据

mongodb数据可视化Using Python to connect to Taiwan Government PM2.5 open data API, and schedule to update data in real time to MongoDB — Part 2使用Python连接到台湾政府PM2.5开放数据API,并计划将数据实时更新到MongoDB —第2部分 目标 (Goal) This ti…

4.kafka的安装部署

为了安装过程对一些参数的理解,我先在这里提一下kafka一些重点概念,topic,broker,producer,consumer,message,partition,依赖于zookeeper, kafka是一种消息队列,他的服务端是由若干个broker组成的,broker会向zookeeper,producer生成者对应一个…

ecshop 前台个人中心修改侧边栏 和 侧边栏显示不全 或 导航现实不全

怎么给个人中心侧边栏加项或者减项 在模板文件default/user_menu.lbi 文件里添加或者修改,一般看到页面都会知道怎么加,怎么删,这里就不啰嗦了 添加一个栏目以后,这个地址跳的页面怎么写 这是最基本的一个包括左侧个人信息,头部导航栏 <!DOCTYPE html PUBLIC "-//W3C//…

面向对象编程思想-观察者模式

一、引言 相信猿友都大大小小经历过一些面试&#xff0c;其中有道经典题目&#xff0c;场景是猫咪叫了一声&#xff0c;老鼠跑了&#xff0c;主人被惊醒&#xff08;设计有扩展性的可加分&#xff09;。对于初学者来说&#xff0c;可能一脸懵逼&#xff0c;这啥跟啥啊是&#x…

Python:在Pandas数据框中查找缺失值

How to find Missing values in a data frame using Python/Pandas如何使用Python / Pandas查找数据框中的缺失值 介绍&#xff1a; (Introduction:) When you start working on any data science project the data you are provided is never clean. One of the most common …

监督学习-回归分析

一、数学建模概述 监督学习&#xff1a;通过已有的训练样本进行训练得到一个最优模型&#xff0c;再利用这个模型将所有的输入映射为相应的输出。监督学习根据输出数据又分为回归问题&#xff08;regression&#xff09;和分类问题&#xff08;classfication&#xff09;&#…

微服务架构技能

2019独角兽企业重金招聘Python工程师标准>>> 微服务架构技能 博客分类&#xff1a; 架构 &#xff08;StuQ 微服务技能图谱&#xff09; 2课程简介 本课程分为基础篇和高级篇两部分&#xff0c;旨在通过完整的案例&#xff0c;呈现微服务的开发、测试、构建、部署、…

Tableau Desktop认证:为什么要关心以及如何通过

Woah, Tableau!哇&#xff0c;Tableau&#xff01; By now, almost everyone’s heard of the data visualization software that brought visual analytics to the public. Its intuitive drag and drop interface makes connecting to data, creating graphs, and sharing d…

约束布局constraint-layout导入失败的解决方案 - 转

今天有同事用到了约束布局&#xff0c;但是导入我的工程出现错误 **提示错误&#xff1a; Could not find com.Android.support.constraint:constraint-layout:1.0.0-alpha3** 我网上查了一下资料&#xff0c;都说是因为我的androidStudio版本是最新的稳定版导入这个包就会报这…

算法复习:冒泡排序

思想&#xff1a;对于一个列表,每个数都是一个"气泡 "&#xff0c;数字越大表示"越重 "&#xff0c;最重的气泡移动到列表最后一位&#xff0c;冒泡排序后的结果就是“气泡”按照它们的重量依次移动到列表中它们相应的位置。 算法&#xff1a;搜索整个列表…

前端基础进阶(七):函数与函数式编程

纵观JavaScript中所有必须需要掌握的重点知识中&#xff0c;函数是我们在初学的时候最容易忽视的一个知识点。在学习的过程中&#xff0c;可能会有很多人、很多文章告诉你面向对象很重要&#xff0c;原型很重要&#xff0c;可是却很少有人告诉你&#xff0c;面向对象中所有的重…

显示与删除使用工具

右击工具菜单栏中的空白处选择自定义 在弹出的自定义菜单中选择命令选项在选择想要往里面添加工具的菜单&#xff0c;之后在选择要添加的工具 若想要删除工具栏中的某个工具&#xff0c;在打开自定义菜单后&#xff0c;按住鼠标左键拖动要删除工具到空白处 例如 转载于:https:/…

js值的拷贝和值的引用_到达P值的底部:直观的解释

js值的拷贝和值的引用介绍 (Introduction) Welcome to this lesson on calculating p-values.欢迎参加有关计算p值的课程。 Before we jump into how to calculate a p-value, it’s important to think about what the p-value is really for.在我们开始计算p值之前&#xff…

监督学习-KNN最邻近分类算法

分类&#xff08;Classification&#xff09;指的是从数据中选出已经分好类的训练集&#xff0c;在该训练集上运用数据挖掘分类的技术建立分类模型&#xff0c;从而对没有分类的数据进行分类的分析方法。 分类问题的应用场景&#xff1a;用于将事物打上一个标签&#xff0c;通常…

无监督学习-主成分分析和聚类分析

聚类分析&#xff08;cluster analysis&#xff09;是将一组研究对象分为相对同质的群组&#xff08;clusters&#xff09;的统计分析技术&#xff0c;即将观测对象的群体按照相似性和相异性进行不同群组的划分&#xff0c;划分后每个群组内部各对象相似度很高&#xff0c;而不…

struts实现分页_在TensorFlow中实现点Struts

struts实现分页If you want to get started on 3D Object Detection and more specifically on Point Pillars, I have a series of posts written on it just for that purpose. Here’s the link. Also, going through the Point Pillars paper directly will be really help…

MySQL-InnoDB索引实现

联合索引提高查询效率的原理 MySQL会为InnoDB的每个表建立聚簇索引&#xff0c;如果表有索引会建立二级索引。聚簇索引以主键建立索引&#xff0c;如果没有主键以表中的唯一键建立&#xff0c;唯一键也没会以隐式的创建一个自增的列来建立。聚簇索引和二级索引都是一个b树&…

钉钉设置jira机器人_这是当您机器学习JIRA票证时发生的事情

钉钉设置jira机器人For software developers, one of the most-debated and maybe even most-hated questions is “…and how long will it take?”. I’ve experienced those discussions myself, which oftentimes lacked precise information on the requirements. What I…

vscode 标准库位置_如何在VSCode中使用标准

vscode 标准库位置I use Visual Studio Code as my text editor. When I write JavaScript, I follow JavaScript Standard Style.Theres an easy way to integrate Standard in VS Code—with the vscode-standardjs plugin. I made a video for this some time ago if youre …