数据图表可视化_数据可视化十大最有用的图表

数据图表可视化

分析师每天使用的最佳数据可视化图表列表。 (List of best data visualization charts that Analysts use on a daily basis.)

Presenting information or data in a visual format is one of the most effective ways. Researchers have proved that the human brain is more acceptable in processing visual information compared to raw or tabular data.

以视觉格式显示信息或数据是最有效的方法之一。 研究人员已经证明,与原始或表格数据相比,人脑在处理视觉信息方面更容易接受。

when analysts process data in charts or in graphs, selection of the right chart or graph according to data is one the prime important task. The wrong selection of chart may lead to misinterpretation where the correct selection enhances the business values and beautify your presentation.

当分析师处理图表或图形中的数据时,根据数据选择正确的图表或图形是最重要的任务之一。 错误选择图表可能导致误解,正确选择图表会增强业务价值并美化您的演示文稿。

There are more than 150 charts available in data visualization. But you will use all of them very less likely. Here is the list of the top 10 most useful charts in data visualization.

数据可视化中有150多种图表可用。 但是您将很少使用它们。 以下是数据可视化中最有用的十大图表的列表。

  1. Scatterplot

    散点图
  2. Line chart

    折线图
  3. Column Chart

    柱形图
  4. Bar Chart

    条形图
  5. Area Chart

    面积图
  6. Bubble Chart

    气泡图
  7. Pie Chart

    饼形图
  8. Waffle Chart or Square Pie Chart

    华夫饼图或方形饼图
  9. Stack Vertical and Horizontal Charts

    堆叠垂直和水平图
  10. Mosaic Plot

    马赛克图

1.散点图 (1. Scatterplot)

This is a very useful chart when you want to show the relationship between two continuous variables. For example, if you want to visualize the relationship between the Price of the house and Area, then you should this chart. By Visualizing this scatterplot we can answer the following question.

当您想显示两个连续变量之间的关系时,这是一个非常有用的图表。 例如,如果要可视化房屋价格和区域之间的关系,则应使用此图表。 通过可视化此散点图,我们可以回答以下问题。

a. Whether the relationship between two variable exists or not?

一个。 两个变量之间的关系是否存在?

b. Is there a positive relationship or a negative relationship exhibit between two variables?

b。 两个变量之间存在正相关还是负相关?

c. What is the degree of relationship between two variables?

C。 两个变量之间的关系程度是多少?

Image for post
Relationship between House Price and Land Area
房价与土地面积的关系

2.线图或折线图 (2. Line Plot or Line Chart)

Line Chart provides useful means for displaying data over time. The line chart is very useful in visualizing time series data or you want to visualize the changes over time. The line chart also provides a meaningful comparison between two or more than two series. For example the world Population world from 1950 to 2020. But always remember that data plotted on the x-axis must be a consistent interval.

折线图提供了一些有用的方式来显示一段时间内的数据。 折线图对于可视化时间序列数据或您希望可视化随时间的变化非常有用。 折线图还提供了两个或两个以上系列之间的有意义的比较。 例如,1950年至2020年的世界人口世界。但请始终记住,在x轴上绘制的数据必须是一致的间隔。

Image for post
Trade between the US and China from 1990 to 2012
1990年至2012年中美之间的贸易

3.柱形图或垂直条形图 (3. Column Chart or Vertical Bar Chart)

This is one of the charts we have studied in our elementary school. Column Chart is the most common and most ignored charts. column Chart is very powerful in presenting information between categorical data and continuous data. This chart very helpful in comparing various categories in data.

这是我们在小学学习的图表之一。 柱形图是最常见和最被忽略的图表。 柱形图在呈现分类数据和连续数据之间的信息方面非常强大。 该图表在比较数据中的各种类别时非常有帮助。

Column and bar charts are useful for comparing categorical or ordinal data, for illustrating differences between sets of values, and for showing proportions or percentages of a whole.

柱状图和条形图可用于比较分类数据或有序数据,说明值集之间的差异以及显示整体的比例或百分比。

For example, Comparing Education level in the district, or male vs female ratio in the district.

例如,比较该地区的教育水平,或该地区的男女比例。

Image for post
Corona Confirmed cases in different countries
不同国家的电晕确诊病例

4.水平条形图 (4. Horizontal Bar Chart)

A flipped version of the column chart and extremely useful because it is very easy to read. When you have more number of categories, it is always recommended to use a horizontal bar chart. our brain trained to read information from left to right, this makes a horizontal bar chart very easy to read. Horizontal bar charts are useful for comparing nominal data. when you are trying to draw to a horizontal bar chart, put information either in ascending or descending order.

柱状图的翻转版本,非常有用,因为它非常易于阅读。 当类别数量更多时,始终建议使用水平条形图。 我们的大脑经过训练可以从左到右读取信息,这使得水平条形图非常易于阅读。 水平条形图对于比较名义数据很有用。 当您尝试绘制水平条形图时,请按升序或降序排列信息。

Image for post
Comparing various Nominal categories
比较各种名义类别

5.面积图 (5. Area Chart)

An Area chart combines the features of the Pie chart and the line chart. The area chart provides more information compare to alone pie charts and line charts. An area chart should be used more carefully if data have many series in the chart then it can clutter the observer mind.

面积图结合了饼图和折线图的功能。 与单独的饼图和折线图相比,面积图提供了更多信息。 如果数据在图表中有很多序列,则应该更仔细地使用面积图,这样会使观察者的头脑混乱。

Image for post
Fuel Consumption Total vs fossil Fuel over 60 years
60年来燃料消耗总量与化石燃料的对比

6.气泡图 (6. Bubble Chart)

This is one the way to present 3 dimension information in two dimensions. The bubble chart is a kind of scatter plot where the size of the bubble defines the value of the third variable. This chart extremely useful in explaining the socio-economic conditions of the place.

这是在二维中呈现3维信息的一种方式。 气泡图是一种散点图,其中气泡的大小定义了第三个变量的值。 该图表在说明该地点的社会经济状况时非常有用。

Image for post
Bubble chart
气泡图

7.饼图 (7. Pie Chart)

If we are interested in understanding the relative proportion of each data source to the total. Then Pie chart can be very useful. Pie chart displaying partition a circle into the Pie-shaped area showing the relative proportion. But Most of the experts suggest not using the pie chart because it is always difficult to compare different proportions in the pie chart.

如果我们有兴趣了解每个数据源在总数中的相对比例。 饼图可能会非常有用。 饼图显示将一个圆圈划分为显示相对比例的饼形区域。 但是大多数专家建议不要使用饼图,因为在饼图中比较不同的比例总是很困难。

Image for post
Pie Chart: Methods of Travelling to school
饼图:上学的方法

8.华夫饼图或方形饼图: (8. Waffle Chart or Square Pie Chart :)

Waffle chart is a 10 X 10 cell grid in which each cell represents 1 percentage point summing up to a total of 100%. Waffle charts can be represented with conditional formatting where cells are highlighted with different colors based on the percentage value of that KPI.There are following used cases of Waffles chart:

华夫饼图是一个10 X 10的单元格网格,其中每个单元格代表1个百分点的总和,总计为100%。 华夫饼图可以用条件格式表示,其中根据该KPI的百分比值以不同的颜色突出显示单元格。

  • To see a high-level view of items and their contribution to a whole

    全面了解项目及其对整体的贡献
  • Showing different KPI’s percentage value

    显示不同的KPI百分比值
Image for post

9.堆叠垂直和水平图 (9. Stack Vertical and Horizontal Charts)

When you are interested in category plus subcategory information then stack chart can be useful. Stack Vertical and horizontal chart shows the total across different category but this stack chart provides information about subcategories. These subcategories can show either absolute value or sum to 100%.

如果您对类别以及子类别信息感兴趣,那么堆栈图可能会很有用。 堆栈垂直和水平图表显示了不同类别的总计,但是此堆栈图表提供了有关子类别的信息。 这些子类别可以显示绝对值或总和为100%。

Image for post

10.马赛克图 (10. Mosaic Plot)

This is a very underrated and uncommon chart. When you have both variables contain categorical data and you want to know the relationship between these variables. then Mosaic plot is very useful.

这是一张被低估且不常见的图表。 当两个变量都包含分类数据并且您想知道这些变量之间的关系时。 那么马赛克图非常有用。

A mosaic plot is a graphical method for visualizing data from two or more qualitative variables. Mosaic plots are also called Mekko charts due to their resemblance to a Marimekko print.

镶嵌图是一种用于可视化来自两个或多个定性变量的数据的图形方法。 由于与Marimekko的印刷相似,马赛克图也称为Mekko图

Image for post

We have a lot of other charts that can help in visualizing the information. But these are the most common useful charts. I used to say this data visualization is a combination of art and science. one should have a creative and scientific mind so that he/she provides the best visual for the data.

我们还有许多其他图表可以帮助可视化信息。 但是,这些是最常见的有用图表。 我曾经说过,这种数据可视化是艺术与科学的结合。 应该具有创造力和科学精神,以便为数据提供最佳视觉效果。

Note: In my Diagram, I have used a black background, which is not recommended by experts. These are charts I have shortlisted based on my experience, Please happy to use other types of charts as well.

注意:在我的图表中,我使用了黑色背景,专家不建议这样做。 这些是根据我的经验我已入围的图表,请也使用其他类型的图表。

HAPPY VISUALIZING📗📘📐🕞📌

快乐的视觉化📗📘📐🕞📌

  1. Business Analytics by James R Evans 2nd Ed.

    James R Evans第二版的业务分析。
  2. Storytelling with Data: A Data visualization guide for Business by Cole Nussbaumer Knaflic

    用数据讲故事:Cole Nussbaumer Knaflic撰写的企业数据可视化指南
  3. https://www.tableau.com/about/blog/2017/4/viz-variety-show-precise-waffle-charts-68462

    https://www.tableau.com/about/blog/2017/4/viz-variety-show-precise-waffle-charts-68462

翻译自: https://medium.com/analytics-vidhya/top-10-most-useful-charts-in-data-visualization-a4c9365d03e4

数据图表可视化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/391557.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

javascript实现自动添加文本框功能

转自:http://www.cnblogs.com/damonlan/archive/2011/08/03/2126046.html 昨天,我们公司的网络小组决定为公司做一个内部的网站,主要是为员工比如发布公告啊、填写相应信息、投诉、问题等等需求。我那同事给了我以下需求: 1.点击一…

从Mysql slave system lock延迟说开去

本文主要分析 sql thread中system lock出现的原因,但是笔者并明没有系统的学习过master-slave的代码,这也是2018年的一个目标,2018年我都排满了,悲剧。所以如果有错误请指出,也作为一个笔记用于后期学习。同时也给出笔…

传智播客全栈_播客:从家庭学生到自学成才的全栈开发人员

传智播客全栈In this weeks episode of the freeCodeCamp podcast, Abbey chats with Madison Kanna, a full-stack developer who works remotely for Mediavine. Madison describes how homeschooling affected her future learning style, how she tackles imposter syndrom…

leetcode 82. 删除排序链表中的重复元素 II(map)

解题思路 map记录数字出现的次数,出现次数大于1的数字从链表中移除 代码 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val val; }* ListNode(…

python 列表、字典多排序问题

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/justin051/article/details/84289189Python使用sorted函数来排序: l [2,1,3,5,7,3]print…

接facebook广告_Facebook广告分析

接facebook广告Is our company’s Facebook advertising even worth the effort?我们公司的Facebook广告是否值得努力? 题: (QUESTION:) A company would like to know if their advertising is effective. Before you start, yes…. Facebook does ha…

如何创建自定义进度栏

Originally published on www.florin-pop.com最初发布在www.florin-pop.com The theme for week #14 of the Weekly Coding Challenge is: 每周编码挑战第14周的主题是: 进度条 (Progress Bar) A progress bar is used to show how far a user action is still in…

基于SpringBoot的CodeGenerator

title: 基于SpringBoot的CodeGenerator tags: SpringBootMybatis生成器PageHelper categories: springboot date: 2017-11-21 15:13:33背景 目前组织上对于一个基础的crud的框架需求较多 因此选择了SpringBoot作为基础选型。 Spring Boot是由Pivotal团队提供的全新框架&#xf…

seaborn线性关系数据可视化:时间线图|热图|结构化图表可视化

一、线性关系数据可视化lmplot( ) 表示对所统计的数据做散点图,并拟合一个一元线性回归关系。 lmplot(x, y, data, hueNone, colNone, rowNone, paletteNone,col_wrapNone, height5, aspect1,markers"o", sharexTrue,shareyTrue, hue_orderNone, col_orde…

hdu 1257

http://acm.hdu.edu.cn/showproblem.php?pid1257 题意:有个拦截系统,这个系统在最开始可以拦截任意高度的导弹,但是之后只能拦截不超过这个导弹高度的导弹,现在有N个导弹需要拦截,问你最少需要多少个拦截系统 思路&am…

eda可视化_5用于探索性数据分析(EDA)的高级可视化

eda可视化Early morning, a lady comes to meet Sherlock Holmes and Watson. Even before the lady opens her mouth and starts telling the reason for her visit, Sherlock can tell a lot about a person by his sheer power of observation and deduction. Similarly, we…

我的AWS开发人员考试未通过。 现在怎么办?

I have just taken the AWS Certified Developer - Associate Exam on July 1st of 2019. The result? I failed.我刚刚在2019年7月1日参加了AWS认证开发人员-联考。结果如何? 我失败了。 The AWS Certified Developer - Associate (DVA-C01) has a scaled score …

关系数据可视化gephi

表示对象之间的关系,可通过gephi软件实现,软件下载官方地址https://gephi.org/users/download/ 如何来表示两个对象之间的关系? 把对象变成点,点的大小、颜色可以是它的两个参数,两个点之间的关系可以用连线表示。连线…

Hyperledger Fabric 1.0 从零开始(十二)——fabric-sdk-java应用

Hyperledger Fabric 1.0 从零开始(十)——智能合约(参阅:Hyperledger Fabric Chaincode for Operators——实操智能合约) Hyperledger Fabric 1.0 从零开始(十一)——CouchDB(参阅&a…

css跑道_如何不超出跑道:计划种子的简单方法

css跑道There’s lots of startup advice floating around. I’m going to give you a very practical one that’s often missed — how to plan your early growth. The seed round is usually devoted to finding your product-market fit, meaning you start with no or li…

将json 填入表格_如何将Google表格用作JSON端点

将json 填入表格UPDATE: 5/13/2020 - New Share Dialog Box steps available below.更新:5/13/2020-下面提供了 新共享对话框步骤。 Thanks Erica H!谢谢埃里卡H! Are you building a prototype dynamic web application and need to collaborate with …

leetcode 173. 二叉搜索树迭代器

实现一个二叉搜索树迭代器类BSTIterator ,表示一个按中序遍历二叉搜索树(BST)的迭代器: BSTIterator(TreeNode root) 初始化 BSTIterator 类的一个对象。BST 的根节点 root 会作为构造函数的一部分给出。指针应初始化为一个不存在…

jyputer notebook 、jypyter、IPython basics

1 、修改jupyter默认工作目录:打开cmd,在命令行下指定想要进的工作目录,即键入“cd d/ G:\0工作面试\学习记录”标红部分是想要进入的工作目录。 2、Tab补全 a、在命令行输入表达式时,按下Tab键即可为任意变量(对象、…

cookie和session(1)

cookie和session 1.cookie产生 识别用户 HTTP是无状态协议,这就回出现这种现象:当你登录一个页面,然后转到登录网站的另一个页面,服务器无法认识到。或者说两次的访问,服务器不能认识到是同一个客户端的访问&#xff0…

熊猫数据集_为数据科学拆箱熊猫

熊猫数据集If you are already familiar with NumPy, Pandas is just a package build on top of it. Pandas provide more flexibility than NumPy to work with data. While in NumPy we can only store values of single data type(dtype) Pandas has the flexibility to st…