adobe 书签怎么设置_让我们设置一些规则…没有Adobe Analytics处理规则

adobe 书签怎么设置

Originally published at Analyst Admin.

最初发布于Analyst Admin 。

In my experience working with Adobe Analytics, I’ve found that Processing Rules help in some cases, but oftentimes they create more work. I try to avoid using Processing Rules whenever possible. In this post, I will cover the main reasons why using Adobe Analytics Processing Rules is not worth it for me.

在使用Adobe Analytics的经验中,我发现处理规则在某些情况下会有所帮助,但通常它们会带来更多工作。 我尽量避免使用处理规则。 在这篇文章中,我将介绍为什么不适合使用Adobe Analytics Processing Rules的主要原因。

跟踪问题更加困难 (Tracing Issues Is More Difficult)

Image for post

第1部分-附加故障点 (Part 1 — Additional Point of Failure)

Picture this — you see a strange value in your Custom Conversion report, so you begin to investigate. The page data layer looks fine. The data beacon looks fine. You can’t replicate the issue. Then you begin to wonder, maybe the issue is only on certain devices? Or only on certain browsers? You continue to spend time checking and rechecking your tracking. After a while, you remember the Processing Rule you created a year ago, and sure enough, you find that it was the culprit causing the issue.

想象一下-您在“自定义转化”报告中看到一个奇怪的值,因此开始调查。 页面数据层看起来不错。 数据信标看起来不错。 您无法复制该问题。 然后您开始怀疑,也许问题仅在某些设备上存在? 还是仅在某些浏览器上? 您继续花时间检查和重新检查您的跟踪。 过了一会儿,您还记得一年前创建的“处理规则”,果然,您发现这是导致此问题的罪魁祸首。

In a typical Adobe Analytics data pipeline, data gets collected at the browser, then goes to Adobe for processing. Any point where data is created, collected, or transformed can be a point of failure. For example:

在典型的Adobe Analytics数据管道中,数据在浏览器中收集,然后转到Adobe进行处理。 创建,收集或转换数据的任何点都可能是故障点。 例如:

  1. The server can send faulty data

    服务器可能发送错误数据
  2. The tag manager can be misconfigured

    标签管理器可能配置错误
  3. Adobe Analytics could be filtering your data via Bot Rules or IP Filters

    Adobe Analytics可能通过Bot规则或IP过滤器过滤了您的数据
  4. Adobe Marketing Channel Processing Rules could be miscategorizing your traffic sources

    Adobe Marketing渠道处理规则可能对流量来源进行了错误分类

If you add Processing Rules to the pipeline, you would add an additional transformation step. An increase in steps would inherently increase the complexity of the model and introduce an additional point of failure which makes tracing issues more difficult.

如果将“处理规则”添加到管道,则将添加其他转换步骤。 步骤的增加会固有地增加模型的复杂性并引入额外的故障点,这将使跟踪问题更加困难。

第2部分-处理规则具有级联作用 (Part 2 — Processing Rules Have a Cascading Effect)

That’s right — Processing Rules are daisy-chained. This means that variables are transformed and passed down to the next Processing Rule, which makes tracing issues difficult.

没错-处理规则是菊花链式的。 这意味着变量将被转换并向下传递到下一个处理规则,这使得跟踪问题变得困难。

Let’s say you have 50 rules, and you identify that rule #25 is transforming your variable. By the time beacon data gets to rule #25, your data could have been transformed 24 different ways. This means that if you see a data beacon with a value “abc”, by the time data gets to rule #25 it could say “xyz” instead. A somewhat useful but human-error-prone way to check what Processing Rules are doing is to take a sample value and manually go through each rule and keep track of the transformations on paper.

假设您有50条规则,并且您确定规则25正在转换变量。 当信标数据达到规则25时,您的数据可能已经以24种不同的方式进行了转换。 这意味着,如果您看到数据信标的值为“ abc”,那么当数据到达规则25时,它可能会改为“ xyz”。 检查处理规则正在执行的一种有用但容易人为错误的方法是获取一个样本值,然后手动检查每个规则,并在纸上跟踪转换。

Furthermore, you also need to worry about the rules that follow the rule that you are working with. Each rule has the same potential to modify your variable whether it’s before or after the rule that you edit.

此外,您还需要担心遵循所使用规则的规则。 无论是在编辑规则之前还是之后,每个规则都有修改变量的潜力。

Take this example:

举个例子:

  • Rule #1: Set v3 on checkout page where campaign = social

    规则1:在结帐页面上设置v3,其中广告系列=社交
  • Rule #2: Set c3 from v3

    规则2:从v3设置c3
  • Rule #3: Set v5 into c5

    规则3:将v5设置为c5
  • Rule #4: Patch for v3 missing on cart page

    规则4:购物车页面上缺少v3补丁
  • Rule #5: Set v4 based on v3 equal to “us|shop”

    规则5:根据v3将v4设置为等于“ us | shop”
  • Rule #6: Set v3 on homepage for mobile

    规则6:在首页上为手机设置v3
  • Rule #7: Add v3 when v3 is not set

    规则7:未设置v3时添加v3

If you needed to update Rule #4, it would behoove you to also check the rules before and after #4 to make sure the final state of v3 is what you were expecting.

如果您需要更新规则#4,那么您还应该检查#4之前和之后的规则,以确保v3的最终状态符合您的期望。

Now picture 100+ rules, a laggy browser, 10 team members, and more not-so-great rule names — It’s a recipe for disaster.

现在可以查看100多个规则,一个浏览器缓慢,10个团队成员以及更多不太好的规则名称-这是灾难的秘诀。

处理规则界面笨拙 (The Processing Rules Interface Is Clunky)

Image for post

When you first load the Processing Rules editor, all rules are collapsed — this makes it impossible to CMD+F (search) by rule definition. Expanding each rule can take a long time since the more rules that you have expanded the worse the whole page lags. I’ve had times where after expanding 100+ rules the page will crash and I need to restart at the top.

首次加载“处理规则”编辑器时,所有规则都将折叠起来-这使得无法通过规则定义进行CMD + F(搜索)。 扩展每个规则可能需要很长时间,因为扩展的规则越多,整个页面的滞后就越严重。 在扩展100多个规则之后,有时页面会崩溃,而我需要在顶部重新启动。

In my desperation, I tried every browser imaginable and found that Firefox is the fastest when dealing with 100+ processing rules.

无奈之下,我尝试了所有可以想象的浏览器,发现Firefox在处理100多个处理规则时是最快的。

Bonus: The interface is so clunky and slow that one time while waiting for a rule to expand I built an entire Processing Rules exporting tool that uses the 1.4 APi. Try it here.

奖励:界面是如此笨拙且缓慢,以至于在等待规则扩展时有一次,我构建了一个使用1.4 APi的完整处理规则导出工具。 在这里尝试 。

处理规则有限 (Processing Rules Are Limited)

Yes — 150 is the max…can we lower it to zero?

是的-最大值为150…我们可以将其降低为零吗?

Image for post

Keep in mind that you will only see this message when you try to save. The page will allow you to add more than 150, but it won’t actually save.

请记住,您尝试保存时只会看到此消息。 该页面将允许您添加150多个,但实际上不会保存。

文档问题 (Documentation Is An Issue)

Keeping track of Adobe eVars, Props, Success Events, and their corresponding Processing Rules can only be done manually. There is no automated solution for extracting variable transformations from Processing Rules. This is part of the reason why tracing issues involving Processing Rules is more difficult.

跟踪Adobe eVar,道具,成功事件及其相应的处理规则只能手动完成。 没有从“处理规则”中提取变量转换的自动化解决方案。 这是跟踪涉及处理规则的问题更加困难的部分原因。

测试处理规则很慢 (Testing Processing Rules Is Slow)

Testing Processing Rules requires patience since there is no real-time Processing Rules testing feature. For example, if you created a new rule for an eVar and wanted to validate the rule by checking the data, you would have to wait up to 90 minutes for the eVar data to get processed and become available in Analysis Workspace or Reports and Analytics.

由于没有实时的处理规则测试功能,因此测试处理规则需要耐心。 例如,如果您为eVar创建了新规则,并想通过检查数据来验证规则,则您可能需要等待90分钟才能处理eVar数据并使其在Analysis Workspace或Reports and Analytics中可用。

As a workaround sometimes I will copy the data to a prop since props are available in real-time reporting, which I can validate immediately without waiting for the eVar.

作为一种解决方法,有时我会将数据复制到道具,因为道具可以在实时报告中使用,我可以立即进行验证,而无需等待eVar。

You might think “This guy really hates processing rules!”, and the truth is that I don’t hate them, I just find that using them is not worth the hassle. However, there are perfectly valid reasons to use them — for instance, if you have no choice (Adobe Heartbeat) or if you need to put in a quick patch.

您可能会认为“这个家伙真的很讨厌处理规则!”,事实是我不讨厌它们,我只是发现使用它们不值得麻烦。 但是,有完全正当的理由使用它们-例如,如果您别无选择(Adobe Heartbeat)或需要快速添加补丁。

Now let’s hear from you — what’s your experience using Adobe Analytics Processing Rules?

现在,让我们听听您的声音-使用Adobe Analytics处理规则有什么经验?

Originally published at https://blog.analystadmin.com

最初发布在 https://blog.analystadmin.com

翻译自: https://medium.com/@analystadmin/lets-set-some-rules-no-adobe-analytics-processing-rules-6116523db589

adobe 书签怎么设置

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/391154.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

详解linux下安装python3环境

1、下载python3.5源码包首先去python官网下载python3的源码包,网址:https://www.python.org/ 进去之后点击导航栏的Downloads,也可以鼠标放到Downloads上弹出菜单选择Source code,表示源码包,这里选择最新版本3.5.2&am…

重学TCP协议(8) TCP的11种状态

TCP的11种状态 为了逻辑更加清晰,假设主动打开连接和关闭连接皆为客户端,被动打开连接和关闭连接皆为服务端 客户端独有的:(1)SYN_SENT (2)FIN_WAIT1 (3)FIN_WAIT2 &…

肯尼亚第三方支付_肯尼亚的COVID-19病例正在Swift增加,我们不知道为什么。

肯尼亚第三方支付COVID-19 cases in Kenya are accelerating rapidly. New cases have increased 300% month-over-month since April of this year while global and regional media have reported on the economic toll of stringent lock-down measures and heavy-handed go…

Java 集合 List Arrays.asList

2019独角兽企业重金招聘Python工程师标准>>> 参考链接:阿里巴巴Java开发手册终极版v1.3.0 【强制】使用工具类 Arrays.asList()把数组转换成集合时,不能使用其修改集合相关的方 法,它的 add/remove/clear 方法会抛出 UnsupportedO…

重学TCP协议(9) 半连接队列、全连接队列

1. 半连接队列、全连接队列基本概念 三次握手中,在第一步server收到client的syn后,把相关信息放到半连接队列中,同时回复synack给client(第二步),同时开启一个定时器,如果超时还未收到 ACK 会进…

分类预测回归预测_我们应该如何汇总分类预测?

分类预测回归预测If you are reading this, then you probably tried to predict who will survive the Titanic shipwreck. This Kaggle competition is a canonical example of machine learning, and a right of passage for any aspiring data scientist. What if instead …

“机器换人”之潮涌向珠三角,蓝领工人将何去何从

企业表示很无奈,由于生产需要,并非刻意换人。 随着传统产业向更加现代化、自动化的新产业转型,“机器换人”似乎是历史上不可逆转的潮流。 据报道,珠三角经济圈所在的广东省要从传统的制造大省向制造强省转变,企业转型…

深入理解InnoDB(6)—独立表空间

InnoDB的表空间 表空间可以看做是InnoDB存储引擎逻辑结构的最高层 ,所有的数据都是存放在表空间中。 1. Extent 对于16KB的页来说,连续的64个页就是一个区,也就是说一个区默认占用1MB空间大小。 每256个区被划分成一组,第一组的前3个页面是…

神经网络推理_分析神经网络推理性能的新工具

神经网络推理Measuring the inference time of a trained deep neural model on different hardware devices is a critical task when making deployment decisions. Should you deploy your inference on 8 Nvidia V100s, on 12 P100s, or perhaps you can use 64 CPU cores?…

Eclipse断点调试

1.1 Eclipse断点调试概述Eclipse的断点调试可以查看程序的执行流程和解决程序中的bug1.2 Eclipse断点调试常用操作:A:什么是断点:就是一个标记,从哪里开始。B:如何设置断点:你想看哪里的程序,你就在那个有效程序的左边双击即可。C…

深入理解InnoDB(7)—系统表空间

系统表空间 可以看到,系统表空间和独立表空间的前三个页面(页号分别为0、1、2,类型分别是FSP_HDR、IBUF_BITMAP、INODE)的类型是一致的,只是页号为3~7的页面是系统表空间特有的 页号3 SYS: Insert Buffer …

CodeForces - 869B The Eternal Immortality

题意&#xff1a;已知a,b&#xff0c;求的最后一位。 分析&#xff1a; 1、若b-a>5&#xff0c;则尾数一定为0&#xff0c;因为连续5个数的尾数要么同时包括一个5和一个偶数&#xff0c;要么包括一个0。 2、若b-a<5&#xff0c;直接暴力求即可。 #include<cstdio>…

如何在24行JavaScript中实现Redux

90% convention, 10% library. 90&#xff05;的惯例&#xff0c;10&#xff05;的图书馆。 Redux is among the most important JavaScript libraries ever created. Inspired by prior art like Flux and Elm, Redux put JavaScript functional programming on the map by i…

卡方检验 原理_什么是卡方检验及其工作原理?

卡方检验 原理As a data science engineer, it’s imperative that the sample data set which you pick from the data is reliable, clean, and well tested for its usability in machine learning model building.作为数据科学工程师&#xff0c;当务之急是从数据中挑选出的…

Web UI 设计(网页设计)命名规范

Web UI 设计命名规范 一.网站设计及基本框架结构: 1. Container“container“ 就是将页面中的所有元素包在一起的部分&#xff0c;这部分还可以命名为: “wrapper“, “wrap“, “page“.2. Header“header” 是网站页面的头部区域&#xff0c;一般来讲&#xff0c;它包含…

27个机器学习图表翻译_使用机器学习的信息图表信息组织

27个机器学习图表翻译Infographics are crucial for presenting information in a more digestible fashion to the audience. With their usage being expanding to many (if not all) professions like journalism, science, and research, advertisements, business, the re…

面向Tableau开发人员的Python简要介绍(第4部分)

用PYTHON探索数据 (EXPLORING DATA WITH PYTHON) Between data blends, joins, and wrestling with the resulting levels of detail in Tableau, managing relationships between data can be tricky.在数据混合&#xff0c;联接以及在Tableau中产生的详细程度之间进行搏斗之间…

蝙蝠侠遥控器pcb_通过蝙蝠侠从Circle到ML:第二部分

蝙蝠侠遥控器pcbView Graph查看图 背景 (Background) Wait! Isn’t the above equation different from what we found last time? Yup, very different but still looks exactly the same or maybe a bit better. Just in case you are wondering what I am talking about, p…

camera驱动框架分析(上)

前言 camera驱动框架涉及到的知识点比较多&#xff0c;特别是camera本身的接口就有很多&#xff0c;有些是直接连接到soc的camif口上的&#xff0c;有些是通过usb接口导出的&#xff0c;如usb camera。我这里主要讨论前者&#xff0c;也就是与soc直连的。我认为凡是涉及到usb的…

探索感染了COVID-19的动物的数据

数据 (The data) With the number of cases steadily rising day by day, COVID-19 has been pretty much in the headlines of every newspaper known to man. Despite the massive amount of attention, a topic that has remained mostly untouched (some exceptions being …