数据库课程设计结论
In this article, we will learn about different types[Z Test and t Test] of commonly used Hypothesis Testing.
在本文中,我们将学习常用假设检验的不同类型[ Z检验和t检验 ]。
假设是什么? (What is Hypothesis?)
This is a Statistical process which is an assumption about population parameter.
这是一个统计过程,是有关总体参数的假设。
Using the hypothesis testing we can reject / accept the assumptions made by projecting the data from Sample to Population (or) from Population to Sample.
使用假设检验,我们可以拒绝/接受通过从样本到总体(或从总体到样本)的数据投影所做的假设。
This process can also be termed as validity of projection.This operates around Null Hypothesis H0 & Alternative Hypothesis H1.
此过程也可以称为投影的有效性。此过程围绕零假设 H0和替代假设H1进行 。
There are few commonly used Tests which can be classified based on 2 categories:
很少有可以根据2类进行分类的常用测试:
Sampling distribution Of Means — Z Test & T Test
均值的抽样分布-Z检验和T检验
Sampling distribution Of Variance — Chi squared Test & F Test
方差的抽样分布-卡方检验和F检验
Z检验: (Z Test:)
Assumptions for Z Test:
Z测试的假设:
a. Sample size should be greater than 30
一个。 样本数量应大于30
b. Population Standard Deviation should be known
b。 人口标准偏差应该是已知的
c. Variables in data should be continuous
C。 数据变量应该是连续的
Steps for Z Test:
Z测试步骤:
a. State H0 or H1 — [From the given problem we need to find]
一个。 状态H0或H1-[根据给定的问题,我们需要找到]
b. Choose the level of significance — [Will be given in problem statement] If it is 0.05 ->1–0.05 = 95%
b。 选择显着性水平-[将在问题陈述中给出]如果为0.05-> 1–0.05 = 95%
c. Find the Critical values — Range for 95% -> Refer the Z score table → -1.96 to +1.96
C。 查找临界值-范围为95%->请参阅Z得分表→-1.96至+1.96
From Emperical split there are 3 most widely used values of Z we can directly take depending on the value:
从Emperical split中可以得出3个最常用的Z值,具体取决于该值:
If the Confidence Level is 99% — Z score value is 2.56, 95% — 1.96,90% — 1.64
如果置信度为99% -Z得分值为 2.56,则95%-1.96,90%-1.64
d. Find the Test Statistics — Z value using the below formula
d。 使用以下公式找到“测试统计量”-Z值
e. Arrive at a Conclusion, to accept the hypothesis or reject the hypothesis
e。 得出结论,接受假设或拒绝假设
Where the variables are;
变量在哪里;
- X =Mean of the Sample, X =样本均值,
- µ =Mean of population µ =人口平均值
- σ = Standard Deviation of population σ=总体标准差
- n = No. of observations n =观察数
If the Z value falls within the Critical Value range, then we can accept the Hypothesis, else it has to be rejected
如果Z值在临界值范围内,则我们可以接受假设,否则就必须拒绝该假设
If the Confidence level is other than the above 3 values, then we need to use Z Score table to find the Z Scores/probability value, with which we can decide on accepting or rejecting the hypothesis.
如果置信度水平不是上述3个值,则需要使用Z分数表查找Z分数/概率值,我们可以使用该值决定接受还是拒绝该假设。
If the resultant value[Test Statistics — Z Value] is negative, then we need to verify negative Z score table. Else we need to verify positive Z score table.
如果结果值[测试统计数据-Z值]为负,则需要验证负Z得分表 。 否则我们需要验证正Z得分表 。
Sample 1: If Test Statistic Z value = 1.26 , then we need to use positive Z score table. Where 1.2 in Y axis and 0.06 in X axis.
样本1:如果测试统计Z值= 1.26,那么我们需要使用正Z得分表。 其中Y轴为1.2,X轴为0.06。
Sample 2: If the Test statistic value is negative, we need to refer the negative Z score table. Finally to get the actual area / probability we need to subtract the Z score value from 1.
示例2:如果“测试”统计量值为负,则需要参考负Z得分表。 最后,要获得实际面积/概率,我们需要从1中减去Z得分值。
T检验: (T Test:)
T Test is also called as Student test.
T测验也称为学生测验。
Assumptions for T Test:
T检验的假设:
a. Sample size can be < 30
一个。 样本大小可以<30
b. Population Standard Deviation is not known
b。 人口标准偏差未知
c. Variables should be continuous
C。 变量应该是连续的
We need to know another small concept called Degrees of Freedom (n-1) when we study about Student “t” test.
当我们研究学生“ t”测验时,我们需要知道另一个称为自由度(n-1)的小概念。
(n-1) — can be defined as the number of independent observations in computing mean is called degrees of freedom.
(n-1) —可以定义为计算平均值时独立观察的数量称为自由度。
“ t”测试步骤: (Steps for “t ”Test:)
a. State H0 or H1
一个。 状态H0或H1
b. Choose the level of significance — [given] If it is 0.05 ->1–0.05 = 95%
b。 选择显着性水平-[给定]如果为0.05-> 1–0.05 = 95%
c. Find the Critical values [Refer the steps above — same as Z Test]
C。 查找临界值[请参考上述步骤-与Z测试相同]
d. Find the Test Statistics — t value using the above formula
d。 使用以上公式找到测试统计量-t值
e. Arrive at a Conclusion, to accept the hypothesis or reject the hypothesis
e。 得出结论,接受假设或拒绝假设
Here we need “t” table to find the probability. Y axis — for Degrees of freedom, X axis — for level of significance.
在这里,我们需要“ t”表来找到概率。 Y轴-适用于自由度,X轴-适用于重要程度。
结论: (Conclusion:)
With this we have come to an end of this article!
至此,我们结束了本文!
In this we have learnt about Tests for Sampling distribution of Means.
在此我们了解了均值抽样分布的检验。
Please wait for “Learning Series II” for Tests related to ‘Sampling distribution of Variance’
请等待“学习系列II”中与“方差抽样分布”相关的测试
Happy Learning! 🙂
学习愉快! 🙂
翻译自: https://medium.com/swlh/hypothesis-testing-and-its-types-8212256a601e
数据库课程设计结论
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390960.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!