数据库课程设计结论_结论:

数据库课程设计结论

In this article, we will learn about different types[Z Test and t Test] of commonly used Hypothesis Testing.

在本文中,我们将学习常用假设检验的不同类型[ Z检验和t检验 ]。

假设是什么? (What is Hypothesis?)

This is a Statistical process which is an assumption about population parameter.

这是一个统计过程,是有关总体参数的假设。

Using the hypothesis testing we can reject / accept the assumptions made by projecting the data from Sample to Population (or) from Population to Sample.

使用假设检验,我们可以拒绝/接受通过从样本到总体(或从总体到样本)的数据投影所做的假设。

This process can also be termed as validity of projection.This operates around Null Hypothesis H0 & Alternative Hypothesis H1.

此过程也可以称为投影的有效性。此过程围绕零假设 H0和替代假设H1进行

There are few commonly used Tests which can be classified based on 2 categories:

很少有可以根据2类进行分类的常用测试:

Sampling distribution Of Means — Z Test & T Test

均值的抽样分布-Z检验和T检验

Sampling distribution Of Variance — Chi squared Test & F Test

方差的抽样分布-卡方检验和F检验

Z检验: (Z Test:)

Assumptions for Z Test:

Z测试的假设:

a. Sample size should be greater than 30

一个。 样本数量应大于30

b. Population Standard Deviation should be known

b。 人口标准偏差应该是已知的

c. Variables in data should be continuous

C。 数据变量应该是连续的

Steps for Z Test:

Z测试步骤:

a. State H0 or H1 — [From the given problem we need to find]

一个。 状态H0或H1-[根据给定的问题,我们需要找到]

b. Choose the level of significance — [Will be given in problem statement] If it is 0.05 ->1–0.05 = 95%

b。 选择显着性水平-[将在问题陈述中给出]如果为0.05-> 1–0.05 = 95%

c. Find the Critical values — Range for 95% -> Refer the Z score table → -1.96 to +1.96

C。 查找临界值-范围为95%->请参阅Z得分表→-1.96至+1.96

From Emperical split there are 3 most widely used values of Z we can directly take depending on the value:

从Emperical split中可以得出3个最常用的Z值,具体取决于该值:

If the Confidence Level is 99% — Z score value is 2.56, 95% — 1.96,90% — 1.64

如果置信度为99% -Z得分值为 2.56,则95%-1.96,90%-1.64

d. Find the Test Statistics — Z value using the below formula

d。 使用以下公式找到“测试统计量”-Z值

e. Arrive at a Conclusion, to accept the hypothesis or reject the hypothesis

e。 得出结论,接受假设或拒绝假设

Image for post
“Z” calculation formula
“ Z”计算公式

Where the variables are;

变量在哪里;

  • X =Mean of the Sample,

    X =样本均值,
  • µ =Mean of population

    µ =人口平均值
  • σ = Standard Deviation of population

    σ=总体标准差
  • n = No. of observations

    n =观察数

If the Z value falls within the Critical Value range, then we can accept the Hypothesis, else it has to be rejected

如果Z值在临界值范围内,则我们可以接受假设,否则就必须拒绝该假设

If the Confidence level is other than the above 3 values, then we need to use Z Score table to find the Z Scores/probability value, with which we can decide on accepting or rejecting the hypothesis.

如果置信度水平不是上述3个值,则需要使用Z分数表查找Z分数/概率值,我们可以使用该值决定接受还是拒绝该假设。

If the resultant value[Test Statistics — Z Value] is negative, then we need to verify negative Z score table. Else we need to verify positive Z score table.

如果结果值[测试统计数据-Z值]为负,则需要验证负Z得分表 。 否则我们需要验证正Z得分表

Sample 1: If Test Statistic Z value = 1.26 , then we need to use positive Z score table. Where 1.2 in Y axis and 0.06 in X axis.

样本1:如果测试统计Z值= 1.26,那么我们需要使用正Z得分表。 其中Y轴为1.2,X轴为0.06。

Sample 2: If the Test statistic value is negative, we need to refer the negative Z score table. Finally to get the actual area / probability we need to subtract the Z score value from 1.

示例2:如果“测试”统计量值为负,则需要参考负Z得分表。 最后,要获得实际面积/概率,我们需要从1中减去Z得分值。

Image for post
Positive Z Score table
正Z得分表
Image for post
Negative Z Score table
负Z得分表

T检验: (T Test:)

T Test is also called as Student test.

T测验也称为学生测验。

Assumptions for T Test:

T检验的假设:

a. Sample size can be < 30

一个。 样本大小可以<30

b. Population Standard Deviation is not known

b。 人口标准偏差未知

c. Variables should be continuous

C。 变量应该是连续的

Image for post
“t” calculation formula
“ t”计算公式

We need to know another small concept called Degrees of Freedom (n-1) when we study about Student “t” test.

当我们研究学生“ t”测验时,我们需要知道另一个称为自由度(n-1)的小概念。

(n-1) — can be defined as the number of independent observations in computing mean is called degrees of freedom.

(n-1) —可以定义为计算平均值时独立观察的数量称为自由度。

“ t”测试步骤: (Steps for “t ”Test:)

a. State H0 or H1

一个。 状态H0或H1

b. Choose the level of significance — [given] If it is 0.05 ->1–0.05 = 95%

b。 选择显着性水平-[给定]如果为0.05-> 1–0.05 = 95%

c. Find the Critical values [Refer the steps above — same as Z Test]

C。 查找临界值[请参考上述步骤-与Z测试相同]

d. Find the Test Statistics — t value using the above formula

d。 使用以上公式找到测试统计量-t值

e. Arrive at a Conclusion, to accept the hypothesis or reject the hypothesis

e。 得出结论,接受假设或拒绝假设

Here we need “t” table to find the probability. Y axis — for Degrees of freedom, X axis — for level of significance.

在这里,我们需要“ t”表来找到概率。 Y轴-适用于自由度,X轴-适用于重要程度。

Image for post
Student “t” table
学生“ t”表

结论: (Conclusion:)

With this we have come to an end of this article!

至此,我们结束了本文!

In this we have learnt about Tests for Sampling distribution of Means.

在此我们了解了均值抽样分布的检验。

Please wait for “Learning Series II” for Tests related to ‘Sampling distribution of Variance’

请等待“学习系列II”中与“方差抽样分布”相关的测试

Happy Learning! 🙂

学习愉快! 🙂

翻译自: https://medium.com/swlh/hypothesis-testing-and-its-types-8212256a601e

数据库课程设计结论

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390960.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

配置Java_Home,临时环境变量信息

一、内容回顾 上一篇博客《Java运行环境的搭建---Windows系统》 我们说到了配置path环境变量的目的在于控制台可以在任意路径下都可以找到java的开发工具。 二、配置其他环境变量 1. 原因 为了获取更大的用户群体&#xff0c;所以使用java语言开发系统需要兼容不同版本的jdk&a…

网页缩放与窗口缩放_功能缩放—不同的Scikit-Learn缩放器的效果:深入研究

网页缩放与窗口缩放内部AI (Inside AI) In supervised machine learning, we calculate the value of the output variable by supplying input variable values to an algorithm. Machine learning algorithm relates the input and output variable with a mathematical func…

Python自动化开发01

一、 变量变量命名规则变量名只能是字母、数字或下划线的任意组合变量名的第一个字符不能是数字以下关键字不能声明为变量名 [and, as, assert, break, class, continue, def, del, elif, else, except, exec, finally, for, from, global, if, import, in, is, lambda, not,…

未越狱设备提取数据_从三星设备中提取健康数据

未越狱设备提取数据Health data is collected every time you have your phone in your pocket. Apple or Android, the phones are equipped with a pedometer that counts your steps. Hence, health data is recorded. This data could be your one free data mart for a si…

[BZOJ2599][IOI2011]Race 点分治

2599: [IOI2011]Race Time Limit: 70 Sec Memory Limit: 128 MBSubmit: 3934 Solved: 1163[Submit][Status][Discuss]Description 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N < 200000, K < 1000000 Input 第一行 两个整数 n, k第二..n行 每行三…

分词消除歧义_角色标题消除歧义

分词消除歧义折磨数据&#xff0c;它将承认任何事情 (Torture the data, and it will confess to anything) Disambiguation as defined in the vocabulary.com dictionary refers to the removal of ambiguity by making something clear and narrowing down its meaning. Whi…

北航教授李波:说AI会有低潮就是胡扯,这是人类长期的追求

这一轮所谓人工智能的高潮&#xff0c;和以往的几次都有所不同&#xff0c;那是因为其受到了产业界的极大关注和参与。而以前并不是这样。 当今世界是一个高度信息化的世界&#xff0c;甚至我们有一只脚已经踏入了智能化时代。而在我们日常交流和信息互动中&#xff0c;迅速发…

在加利福尼亚州投资于新餐馆:一种数据驱动的方法

“It is difficult to make predictions, especially about the future.”“很难做出预测&#xff0c;尤其是对未来的预测。” ~Niels Bohr〜尼尔斯波尔 Everything is better interpreted through data. And data-driven decision making is crucial for success in any ind…

阿里云ESC上的Ubuntu图形界面的安装

系统装的是Ubuntu Server 16.04 64位版的图形界面&#xff0c;这里是转载的一个大神的帖子 http://blog.csdn.net/dk_0228/article/details/54571867&#xff0c; 当然自己也再记录一下&#xff0c;加深点印象 1.更新apt-get 保证最新 apt-get update 2.用putty或者Xshell连接远…

近似算法的近似率_选择最佳近似最近算法的数据科学家指南

近似算法的近似率by Braden Riggs and George Williams (gwilliamsgsitechnology.com)Braden Riggs和George Williams(gwilliamsgsitechnology.com) Whether you are new to the field of data science or a seasoned veteran, you have likely come into contact with the te…

VMware安装CentOS之二——最小化安装CentOS

1、上文已经创建了一个虚拟机&#xff0c;现在我们点击开启虚拟机。2、虚拟机进入到安装的界面&#xff0c;在这里我们选择第一行&#xff0c;安装或者升级系统。3、这里会提示要检查光盘&#xff0c;我们直接选择跳过。4、这里会提示我的硬件设备不被支持&#xff0c;点击OK&a…

在Python中使用Seaborn和WordCloud可视化YouTube视频

I am an avid Youtube user and love watching videos on it in my free time. I decided to do some exploratory data analysis on the youtube videos streamed in the US. I found the dataset on the Kaggle on this link我是YouTube的狂热用户&#xff0c;喜欢在业余时间…

老生常谈:抽象工厂模式

在创建型模式中有一个模式是不得不学的,那就是抽象工厂模式(Abstract Factory),这是创建型模式中最为复杂,功能最强大的模式.它常与工厂方法组合来实现。平时我们在写一个组件的时候一般只针对一种语言,或者说是针对一个区域的人来实现。 例如:现有有一个新闻组件,在中国我们有…

数据结构入门最佳书籍_最佳数据科学书籍

数据结构入门最佳书籍Introduction介绍 I get asked a lot what resources I recommend for people who want to start their Data Science journey. This section enlists books I recommend you should read at least once in your life as a Data Scientist.我被很多人问到…

函数式编程概念

什么是函数式编程 简单地说&#xff0c;函数式编程通过使用函数&#xff0c;将值转换成抽象单元&#xff0c;接着用于构建软件系统。 面向对象VS函数式编程 面向对象编程 面向对象编程认为一切事物皆对象&#xff0c;将现实世界的事物抽象成对象&#xff0c;现实世界中的关系抽…

多重插补 均值插补_Feature Engineering Part-1均值/中位数插补。

多重插补 均值插补Understanding the Mean /Median Imputation and Implementation using feature-engine….!了解使用特征引擎的均值/中位数插补和实现…。&#xff01; 均值或中位数插补&#xff1a; (Mean or Median Imputation:) The mean or median value should be calc…

linux 查看用户上次修改密码的日期

查看root用户密码上次修改的时间 方法一&#xff1a;查看日志文件&#xff1a; # cat /var/log/secure |grep password changed 方法二&#xff1a; # chage -l root-----Last password change : Feb 27, 2018 Password expires : never…

客户行为模型 r语言建模_客户行为建模:汇总统计的问题

客户行为模型 r语言建模As a Data Scientist, I spend quite a bit of time thinking about Customer Lifetime Value (CLV) and how to model it. A strong CLV model is really a strong customer behavior model — the better you can predict next actions, the better yo…

【知识科普】解读闪电/雷电网络,零基础秒懂!

知识科普&#xff0c;解读闪电/雷电网络&#xff0c;零基础秒懂&#xff01; 闪电网络的技术是革命性的&#xff0c;将实现即时0手续费的小金额支付。第一步是解决扩容问题&#xff0c;第二部就是解决共通性问题&#xff0c;利用原子交换协议和不同链条的状态通道结合&#xff…

Alpha 冲刺 (5/10)

【Alpha go】Day 5&#xff01; Part 0 简要目录 Part 1 项目燃尽图Part 2 项目进展Part 3 站立式会议照片Part 4 Scrum 摘要Part 5 今日贡献Part 1 项目燃尽图 Part 2 项目进展 已分配任务进度博客检索功能&#xff1a;根据标签检索流程图 -> 实现 -> 测试近期比…