数据可视化分析票房数据报告_票房收入分析和可视化

数据可视化分析票房数据报告

Welcome back to my 100 Days of Data Science Challenge Journey. On day 4 and 5, I work on TMDB Box Office Prediction Dataset available on Kaggle.

欢迎回到我的100天数据科学挑战之旅。 在第4天和第5天,我将研究Kaggle上提供的TMDB票房预测数据集。

I’ll start by importing some useful libraries that we need in this task.

我将从导入此任务中需要的一些有用的库开始。

import pandas as pd# for visualizations
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
plt.style.use('dark_background')

数据加载与探索 (Data Loading and Exploration)

Once you downloaded data from the Kaggle, you will have 3 files. As this is a prediction competition, you have train, test, and sample_submission file. For this project, my motive is only to perform data analysis and visuals. I am going to ignore test.csv and sample_submission.csv files.

从Kaggle下载数据后,您将拥有3个文件。 由于这是一场预测比赛,因此您具有训练,测试和sample_submission文件。 对于这个项目,我的动机只是执行数据分析和视觉效果。 我将忽略test.csv和sample_submission.csv文件。

Let’s load train.csv in data frame using pandas.

让我们使用熊猫在数据框中加载train.csv。

%time train = pd.read_csv('./data/tmdb-box-office-prediction/train.csv')# output
CPU times: user 258 ms, sys: 132 ms, total: 389 ms
Wall time: 403 ms

关于数据集: (About the dataset:)

id: Integer unique id of each moviebelongs_to_collection: Contains the TMDB Id, Name, Movie Poster, and Backdrop URL of a movie in JSON format.budget: Budget of a movie in dollars. Some row contains 0 values, which mean unknown.genres: Contains all the Genres Name & TMDB Id in JSON Format.homepage: Contains the official URL of a movie.imdb_id: IMDB id of a movie (string).original_language: Two-digit code of the original language, in which the movie was made.original_title: The original title of a movie in original_language.overview: Brief description of the movie.popularity: Popularity of the movie.poster_path: Poster path of a movie. You can see full poster image by adding URL after this link → https://image.tmdb.org/t/p/original/production_companies: All production company name and TMDB id in JSON format of a movie.production_countries: Two-digit code and the full name of the production company in JSON format.release_date: The release date of a movie in mm/dd/yy format.runtime: Total runtime of a movie in minutes (Integer).spoken_languages: Two-digit code and the full name of the spoken language.status: Is the movie released or rumored?tagline: Tagline of a movietitle: English title of a movieKeywords: TMDB Id and name of all the keywords in JSON format.cast: All cast TMDB id, name, character name, gender (1 = Female, 2 = Male) in JSON formatcrew: Name, TMDB id, profile path of various kind of crew members job like Director, Writer, Art, Sound, etc.revenue: Total revenue earned by a movie in dollars.

Let’s have a look at the sample data.

让我们看一下样本数据。

train.head()

As we can see that some features have dictionaries, hence I am dropping all such columns for now.

如我们所见,某些功能具有字典,因此我暂时删除所有此类列。

train = train.drop(['belongs_to_collection', 'genres', 'crew',
'cast', 'Keywords', 'spoken_languages', 'production_companies', 'production_countries', 'tagline','overview','homepage'], axis=1)

Now it time to have a look at statistics of the data.

现在该看一下数据统计了。

print("Shape of data is ")
train.shape# OutputShape of data is
(3000, 12)

Dataframe information.

数据框信息。

train.info()# Output
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 id 3000 non-null int64
1 budget 3000 non-null int64
2 imdb_id 3000 non-null object
3 original_language 3000 non-null object
4 original_title 3000 non-null object
5 popularity 3000 non-null float64
6 poster_path 2999 non-null object
7 release_date 3000 non-null object
8 runtime 2998 non-null float64
9 status 3000 non-null object
10 title 3000 non-null object
11 revenue 3000 non-null int64
dtypes: float64(2), int64(3), object(7)
memory usage: 281.4+ KB

Describe dataframe.

描述数据框。

train.describe()

Let’s create new columns for release weekday, date, month, and year.

让我们为发布工作日,日期,月份和年份创建新列。

train['release_date'] = pd.to_datetime(train['release_date'], infer_datetime_format=True)train['release_day'] = train['release_date'].apply(lambda t: t.day)train['release_weekday'] = train['release_date'].apply(lambda t: t.weekday())train['release_month'] = train['release_date'].apply(lambda t: t.month)
train['release_year'] = train['release_date'].apply(lambda t: t.year if t.year < 2018 else t.year -100)

数据分析与可视化 (Data Analysis and Visualization)

Image for post
Photo by Isaac Smith on Unsplash
艾萨克·史密斯 ( Isaac Smith)在Unsplash上拍摄的照片

问题1:哪部电影的收入最高? (Question 1: Which movie made the highest revenue?)

train[train['revenue'] == train['revenue'].max()]
train[['id','title','budget','revenue']].sort_values(['revenue'], ascending=False).head(10).style.background_gradient(subset='revenue', cmap='BuGn')# Please note that output has a gradient style, but in a medium, it is not possible to show.

The Avengers movie has made the highest revenue.

复仇者联盟电影的收入最高。

问题2:哪部电影的预算最高? (Question 2 : Which movie has the highest budget?)

train[train['budget'] == train['budget'].max()]
train[['id','title','budget', 'revenue']].sort_values(['budget'], ascending=False).head(10).style.background_gradient(subset=['budget', 'revenue'], cmap='PuBu')

Pirates of the Caribbean: On Stranger Tides is most expensive movie.

加勒比海盗:惊涛怪浪是最昂贵的电影。

问题3:哪部电影是最长的电影? (Question 3: Which movie is longest movie?)

train[train['runtime'] == train['runtime'].max()]
plt.hist(train['runtime'].fillna(0) / 60, bins=40);
plt.title('Distribution of length of film in hours', fontsize=16, color='white');
plt.xlabel('Duration of Movie in Hours')
plt.ylabel('Number of Movies')
Image for post
train[['id','title','runtime', 'budget', 'revenue']].sort_values(['runtime'],ascending=False).head(10).style.background_gradient(subset=['runtime','budget','revenue'], cmap='YlGn')

Carlos is the longest movie, with 338 minutes (5 hours and 38 minutes) of runtime.

卡洛斯(Carlos)是最长的电影,有338分钟(5小时38分钟)的运行时间。

问题4:大多数电影在哪一年发行的? (Question 4: In which year most movies were released?)

plt.figure(figsize=(20,12))
edgecolor=(0,0,0),
sns.countplot(train['release_year'].sort_values(), palette = "Dark2", edgecolor=(0,0,0))
plt.title("Movie Release count by Year",fontsize=20)
plt.xlabel('Release Year')
plt.ylabel('Number of Movies Release')
plt.xticks(fontsize=12,rotation=90)
plt.show()
Image for post
train['release_year'].value_counts().head()# Output2013    141
2015 128
2010 126
2016 125
2012 125
Name: release_year, dtype: int64

In 2013 total 141 movies were released.

2013年,总共发行了141部电影。

问题5:最受欢迎和最低人气的电影。 (Question 5 : Movies with Highest and Lowest popularity.)

Most popular Movie:

最受欢迎的电影:

train[train['popularity']==train['popularity'].max()][['original_title','popularity','release_date','revenue']]

Least Popular Movie:

最不受欢迎的电影:

train[train['popularity']==train['popularity'].min()][['original_title','popularity','release_date','revenue']]

Lets create popularity distribution plot.

让我们创建人气分布图。

plt.figure(figsize=(20,12))
edgecolor=(0,0,0),
sns.distplot(train['popularity'], kde=False)
plt.title("Movie Popularity Count",fontsize=20)
plt.xlabel('Popularity')
plt.ylabel('Count')
plt.xticks(fontsize=12,rotation=90)
plt.show()
Image for post

Wonder Woman movie have highest popularity of 294.33 whereas Big Time movie have lowest popularity which is 0.

《神奇女侠》电影的最高人气为294.33,而《大时代》电影的最低人气为0。

问题6:从1921年到2017年,大多数电影在哪个月发行? (Question 6 : In which month most movies are released from 1921 to 2017?)

plt.figure(figsize=(20,12))
edgecolor=(0,0,0),
sns.countplot(train['release_month'].sort_values(), palette = "Dark2", edgecolor=(0,0,0))
plt.title("Movie Release count by Month",fontsize=20)
plt.xlabel('Release Month')
plt.ylabel('Number of Movies Release')
plt.xticks(fontsize=12)
plt.show()
Image for post
train['release_month'].value_counts()# Output
9 362
10 307
12 263
8 256
4 245
3 238
6 237
2 226
5 224
11 221
1 212
7 209
Name: release_month, dtype: int64

In september month most movies are relesed which is around 362.

在9月中,大多数电影都已发行,大约362。

问题7:大多数电影在哪个月上映? (Question 7 : On which date of month most movies are released?)

plt.figure(figsize=(20,12))
edgecolor=(0,0,0),
sns.countplot(train['release_day'].sort_values(), palette = "Dark2", edgecolor=(0,0,0))
plt.title("Movie Release count by Day of Month",fontsize=20)
plt.xlabel('Release Day')
plt.ylabel('Number of Movies Release')
plt.xticks(fontsize=12)
plt.show()
Image for post
train['release_day'].value_counts().head()#Output
1 152
15 126
12 122
7 110
6 107
Name: release_day, dtype: int64

首次发布影片的最高数量为152。 (On first date highest number of movies are released, 152.)

问题8:大多数电影在一周的哪一天发行? (Question 8 : On which day of week most movies are released?)

plt.figure(figsize=(20,12))
sns.countplot(train['release_weekday'].sort_values(), palette='Dark2')
loc = np.array(range(len(train['release_weekday'].unique())))
day_labels = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
plt.xlabel('Release Day of Week')
plt.ylabel('Number of Movies Release')
plt.xticks(loc, day_labels, fontsize=12)
plt.show()
Image for post
train['release_weekday'].value_counts()# Output
4 1334
3 609
2 449
1 196
5 158
0 135
6 119
Name: release_weekday, dtype: int64

星期五上映的电影数量最多。 (Highest number of movies released on friday.)

最后的话 (Final Words)

I hope this article was helpful to you. I tried to answer a few questions using data science. There are many more questions to ask. Now, I will move towards another dataset tomorrow. All the codes of data analysis and visuals can be found at this GitHub repository or Kaggle kernel.

希望本文对您有所帮助。 我尝试使用数据科学回答一些问题。 还有更多问题要问。 现在,我明天将移至另一个数据集。 可以在此GitHub存储库或Kaggle内核中找到所有数据分析和可视化代码。

Thanks for reading.

谢谢阅读。

I appreciate any feedback.

我感谢任何反馈。

数据科学进展100天 (100 Days of Data Science Progress)

If you like my work and want to support me, I’d greatly appreciate it if you follow me on my social media channels:

如果您喜欢我的工作并希望支持我,那么如果您在我的社交媒体频道上关注我,我将不胜感激:

  • The best way to support me is by following me on Medium.

    支持我的最佳方法是在Medium上关注我。

  • Subscribe to my new YouTube channel.

    订阅我的新YouTube频道

  • Sign up on my email list.

    在我的电子邮件列表中注册。

翻译自: https://towardsdatascience.com/box-office-revenue-analysis-and-visualization-ce5b81a636d7

数据可视化分析票房数据报告

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390897.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

sql limit子句_SQL子句解释的位置:之间,之间,类似和其他示例

sql limit子句什么是SQL Where子句&#xff1f; (What is a SQL Where Clause?) WHERE子句(和/或IN &#xff0c; BETWEEN和LIKE ) (The WHERE Clause (and/or, IN , BETWEEN , and LIKE )) The WHERE clause is used to limit the number of rows returned.WHERE子句用…

在Java里面使用instanceof的性能影响

问题&#xff1a;在Java里面使用instanceof的性能影响 我正在写一个应用程序&#xff0c;其中一种设计方案包含了instanceof操作的大量使用。虽然我知道面向对象设计通常试图避免使用instanceof&#xff0c;但那是另一回事了&#xff0c;这个问题纯粹只是讨论与性能有关。我想…

Soot生成控制流图

1.将soot.jar文件复制到工程bin目录下&#xff1b;2.在cmd中执行如下命令java -cp soot-trunck.jar soot.tools.CFGViewer --soot-classpath .;"%JAVA_HOME%"\jre\lib\rt.jar com.wauoen.paper.classes.Activity其中&#xff0c;JAVA_HOME是jdk目录&#xff1b;com.w…

Centos 6.5安装MySQL-python

报错信息&#xff1a;Using cached MySQL-python-1.2.5.zip Complete output from command python setup.py egg_info: sh: mysql_config: command not found Traceback (most recent call last): File "<string>", line 1, in <module&g…

react 最佳实践_最佳React教程

react 最佳实践React is a JavaScript library for building user interfaces. It was voted the most loved in the “Frameworks, Libraries, and Other Technologies” category of Stack Overflow’s 2017 Developer Survey.React是一个用于构建用户界面JavaScript库。 在S…

先知模型 facebook_Facebook先知

先知模型 facebook什么是先知&#xff1f; (What is Prophet?) “Prophet” is an open-sourced library available on R or Python which helps users analyze and forecast time-series values released in 2017. With developers’ great efforts to make the time-series …

Java里面的静态代码块

问题&#xff1a;Java里面的静态代码块 I was looking over some code the other day and I came across: 前几天我在看一些代码时发现&#xff1a; static {... }我是c转来的&#xff0c;我不知道为啥要这样干。这个代码也编译成功了&#xff0c;没出错误。这里的"stat…

搭建Maven私服那点事

摘要&#xff1a;本文主要介绍在CentOS7.1下使用nexus3.6.0搭建maven私服&#xff0c;以及maven私服的使用&#xff08;将自己的Maven项目指定到私服地址、将第三方项目jar上传到私服供其他项目组使用&#xff09; 一、简介 Maven是一个采用纯Java编写的开源项目管理工具, Mave…

lee最短路算法_Lee算法的解释:迷宫运行并找到最短路径

lee最短路算法Lee算法是什么&#xff1f; (What is the Lee Algorithm?) The Lee algorithm is one possible solution for maze routing problems. It always gives an optimal solution, if one exists, but is slow and requires large memory for dense layout.Lee算法是迷…

gan训练失败_我尝试过(但失败了)使用GAN来创作艺术品,但这仍然值得。

gan训练失败This work borrows heavily from the Pytorch DCGAN Tutorial and the NVIDA paper on progressive GANs.这项工作大量借鉴了Pytorch DCGAN教程 和 有关渐进式GAN 的 NVIDA论文 。 One area of computer vision I’ve been wanting to explore are GANs. So when m…

怎么样实现对一个对象的深拷贝

问题&#xff1a;怎么样实现对一个对象的深拷贝 使用深拷贝的方法有点难实现啊。要保证原来的对象和克隆对象不是共享同一个引用的步骤是什么啊&#xff1f; 回答一 一种安全的方法是先序列化对象&#xff0c;然后反序列化。这保证了所有东西都是一个新的引用。 这里有一篇…

19.7 主动模式和被动模式 19.8 添加监控主机 19.9 添加自定义模板 19.10 处理图形中的乱码 19.11 自动发现...

2019独角兽企业重金招聘Python工程师标准>>> 19.7 主动模式和被动模式 • 主动或者被动是相对客户端来讲的 • 被动模式&#xff0c;服务端会主动连接客户端获取监控项目数据&#xff0c;客户端被动地接受连接&#xff0c;并把监控信息传递给服务端 服务端请求以后&…

Codeforces Round #444 (Div. 2) C.Solution for Cube 模拟

向题解低头&#xff0c;向大佬低头(。﹏。)orz……模拟也不能乱模啊……要好好分析题意&#xff0c;简化简化再简化orz敲黑板 六个面的魔方&#xff0c;能一步还原的情况一定是只有2个面是单色&#xff0c;其余四个面&#xff0c;每个面2种颜色&#xff0c;而且不会出现任意两面…

fcc认证_介绍fCC 100:我们对2019年杰出贡献者的年度总结

fcc认证2019 has been a big year for the global freeCodeCamp community.对于全球freeCodeCamp社区来说&#xff0c;2019年是重要的一年。 More people are answering questions on the forum. 越来越多的人在论坛上回答问题。 Our publication has several new, rising aut…

华盛顿特区与其他地区的差别_使用华盛顿特区地铁数据确定可获利的广告位置...

华盛顿特区与其他地区的差别深度分析 (In-Depth Analysis) Living in Washington DC for the past 1 year, I have come to realize how WMATA metro is the lifeline of this vibrant city. The metro network is enormous and well-connected throughout the DMV area. When …

Windows平台下kafka环境的搭建

近期在搞kafka&#xff0c;在Windows环境搭建的过程中遇到一些问题&#xff0c;把具体的流程几下来防止后面忘了。 准备工作&#xff1a; 1.安装jdk环境 http://www.oracle.com/technetwork/java/javase/downloads/index.html 2.下载kafka的程序安装包&#xff1a; http://kafk…

deeplearning.ai 改善深层神经网络 week2 优化算法

这一周的主题是优化算法。 1. Mini-batch&#xff1a; 上一门课讨论的向量化的目的是去掉for循环加速优化计算&#xff0c;X [x(1) x(2) x(3) ... x(m)]&#xff0c;X的每一个列向量x(i)是一个样本&#xff0c;m是样本个数。但当样本很多时&#xff08;比如m500万&#xff09…

gcc汇编汇编语言_什么是汇编语言?

gcc汇编汇编语言Assembly Language is the interface between higher level languages (C, Java, etc) and machine code (binary). For a compiled language, the compiler transforms higher level code into assembly language code.汇编语言是高级语言(C &#xff0c;Java等…

铺装s路画法_数据管道的铺装之路

铺装s路画法Data is a key bet for Intuit as we invest heavily in new customer experiences: a platform to connect experts anywhere in the world with customers and small business owners, a platform that connects to thousands of institutions and aggregates fin…

leetcode421. 数组中两个数的最大异或值(贪心算法)

给你一个整数数组 nums &#xff0c;返回 nums[i] XOR nums[j] 的最大运算结果&#xff0c;其中 0 ≤ i ≤ j < n 。 进阶&#xff1a;你可以在 O(n) 的时间解决这个问题吗&#xff1f; 示例 1&#xff1a; 输入&#xff1a;nums [3,10,5,25,2,8] 输出&#xff1a;28 解…