2023年国赛数学建模思路 - 案例:ID3-决策树分类算法

文章目录

  • 0 赛题思路
    • 1 算法介绍
    • 2 FP树表示法
    • 3 构建FP树
    • 4 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

2 FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

3 构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

4 实现代码

def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDatdef createInitSet(dataSet):retDict = {}for trans in dataSet:fset = frozenset(trans)retDict.setdefault(fset, 0)retDict[fset] += 1return retDictclass treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValueself.count = numOccurself.nodeLink = Noneself.parent = parentNodeself.children = {}def inc(self, numOccur):self.count += numOccurdef disp(self, ind=1):print('   ' * ind, self.name, ' ', self.count)for child in self.children.values():child.disp(ind + 1)def createTree(dataSet, minSup=1):headerTable = {}#此一次遍历数据集, 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] = headerTable.get(item, 0) + 1#根据最小支持度过滤lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))for k in lessThanMinsup: del(headerTable[k])freqItemSet = set(headerTable.keys())#如果所有数据都不满足最小支持度,返回None, Noneif len(freqItemSet) == 0:return None, Nonefor k in headerTable:headerTable[k] = [headerTable[k], None]retTree = treeNode('φ', 1, None)#第二次遍历数据集,构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度localD = {}for item in tranSet:if item in freqItemSet:localD[item] = headerTable[item][0]if len(localD) > 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]updateTree(orderedItems, retTree, headerTable, count)return retTree, headerTabledef updateTree(items, inTree, headerTable, count):if items[0] in inTree.children:  # check if orderedItems[0] in retTree.childreninTree.children[items[0]].inc(count)  # incrament countelse:  # add items[0] to inTree.childreninTree.children[items[0]] = treeNode(items[0], count, inTree)if headerTable[items[0]][1] == None:  # update header tableheaderTable[items[0]][1] = inTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], inTree.children[items[0]])if len(items) > 1:  # call updateTree() with remaining ordered itemsupdateTree(items[1:], inTree.children[items[0]], headerTable, count)def updateHeader(nodeToTest, targetNode):  # this version does not use recursionwhile (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!nodeToTest = nodeToTest.nodeLinknodeToTest.nodeLink = targetNodesimpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/39085.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

项目:基于UDP的TFTP文件传输

1&#xff09;tftp协议概述 简单文件传输协议&#xff0c;适用于在网络上进行文件传输的一套标准协议&#xff0c;使用UDP传输特点&#xff1a; 是应用层协议 基于UDP协议实现 数据传输模式 octet&#xff1a;二进制模式&#xff08;常用&#xff09; mail&#xff1a;已经不再…

分布式 - 服务器Nginx:一小时入门系列之代理缓冲与缓存

官方文档&#xff1a;https://nginx.org/en/docs/http/ngx_http_proxy_module.html 1. 代理缓冲 proxy_buffer 代理缓冲用于临时存储从后端服务器返回的响应数据。通过使用代理缓冲&#xff0c;Nginx可以在接收完整的响应后再将其发送给客户端&#xff0c;从而提高性能和效率…

照耀国产的星火,再度上新!

国产之光&#xff0c;星火闪耀 ⭐ 新时代的星火⭐ 多模态能力⭐ 图像生成与虚拟人视频生成⭐ 音频生成与OCR笔记收藏⭐ 助手模式更新⭐ 插件能力⭐ 代码能力⭐ 写在最后 ⭐ 新时代的星火 在这个快速变革的时代&#xff0c;人工智能正迅猛地催生着前所未有的革命。从医疗到金融…

【管理运筹学】第 5 章 | 整数规划 (1,问题提出与分支定界法)

文章目录 引言一、整数规划问题的提出1.1 整数规划的数学模型1.2 整数规划问题的求解 二、分支定界法2.1 分支与定界2.2 基本求解步骤&#xff08;一&#xff09;初始化&#xff08;二&#xff09;分支与分支树&#xff08;三&#xff09;定界与剪枝&#xff08;四&#xff09;…

SpringBoot之HandlerInterceptor拦截器的使用

&#x1f600;前言 本篇博文是关于拦截器-HandlerInterceptor的使用&#xff0c;希望你能够喜欢 &#x1f3e0;个人主页&#xff1a;晨犀主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是晨犀&#xff0c;希望我的文章可以帮助到大家&#xff0c;您的满意是我的动…

Linux 多进程

目录 0x01 linux中特殊的进程 0x02 进程的标识 0x03 创建子进程 0x01 linux中特殊的进程 0号进程&#xff1a;idle进程&#xff0c;系统启动加载的进程1号进程&#xff1a;systemd进程&#xff0c;系统初始化&#xff0c;是所有进程的祖先进程 init2号进程&#xff1a;kthre…

YOLOv5白皮书-第Y6周:模型改进

&#x1f4cc;本周任务&#xff1a;模型改进&#x1f4cc; 注&#xff1a;对yolov5l.yaml文件中的backbone模块和head模块进行改进。 任务结构图&#xff1a; YOLOv5s网络结构图: 原始模型代码&#xff1a; # YOLOv5 v6.0 backbone backbone:# [from, number, module, args]…

每日汇评:黄金在 200 日移动平均线附近似乎很脆弱,关注美国零售销售

1、金价预计将巩固其近期跌势&#xff0c;至 6 月初以来的最低水平&#xff1b; 2、对美联储再次加息的押注继续限制了贵金属的上涨&#xff1b; 3、金融市场现在期待美国零售销售报告带来一些有意义的推动&#xff1b; 周二金价难以获得任何有意义的牵引力&#xff0c;并在…

Mac RN环境搭建

IOS RN ios android原生环境搭建有时候是真恶心&#xff0c;电脑环境不一样配置也有差异。 我已经安装官网的文档配置了ios环境 执行 npx react-nativelatest init AwesomeProject 报错 然后自己百度查呀执行 gem update --system 说是没有权限&#xff0c;执行失败。因…

POSTGRESQL 关于安装中自动启动的问题 详解

开头还是介绍一下群&#xff0c;如果感兴趣Polardb ,mongodb ,MySQL ,Postgresql ,redis &#xff0c;SQL SERVER ,ORACLE,Oceanbase 等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;CTO&#xff0c;可以解决你的问题。加群请加 liuaustin3微信号 &…

OpenSSH 远程升级到 9.4p1

OpenSSH 远程升级到 9.4p1 文章目录 OpenSSH 远程升级到 9.4p1背景升级前提1. 升级 OpenSSL2. 安装并启用Telnet 升级OpenSSH 背景 最近的护网行动&#xff0c;被查出来了好几个关于OpenSSH 的漏洞。这是因为服务器系统安装后&#xff0c;直接使用了系统自带版本的OpenSSH &am…

2023-08-15 linux mipi 屏幕调试:有一个屏幕开机时候不显示,开机后按power 按键休眠唤醒就可以显示。原因是reset gpio 被复用

一、现象&#xff1a;今天更新了一个新版本的buildroot linux sdk &#xff0c;调试两个mipi 屏幕&#xff0c;这两个屏幕之前在其他的sdk都调好了的&#xff0c;所有直接把配置搬过来。但是有一个屏幕可以正常显示&#xff0c;有一个屏幕开机时候不显示&#xff0c;开机后按po…

CentOS防火墙操作:开启端口、开启、关闭、配置

一、基本使用 启动&#xff1a; systemctl start firewalld 关闭&#xff1a; systemctl stop firewalld 查看状态&#xff1a; systemctl status firewalld 开机禁用 &#xff1a; systemctl disable firewalld 开机启用 &#xff1a; systemctl enable firewalld systemctl是…

C语言,结构体,结构体大小,

1、结构体&#xff1a; 用于存储不同数据类型的多个相关变量&#xff0c;从而形成一个具有独立性的组合数据类型。 结构体的声明&#xff1a; struct 结构体类型名{ 数据类型 成员1&#xff1b; 数据类型 成员2&#xff1b; 数据类型 成员3&#xff1b; ……… }&#xff1…

转行软件测试四个月学习,第一次面试经过分享

我是去年上半年从销售行业转行到测试的&#xff0c;从销售公司辞职之后选择去培训班培训软件测试&#xff0c;经历了四个月左右的培训&#xff0c;在培训班结课前两周就开始投简历了&#xff0c;在结课的时候顺利拿到了offer。在新的公司从事软件测试工作已经将近半年有余&…

深信服数据中心管理系统 XXE漏洞复现

0x01 产品简介 深信服数据中心管理系统DC为AC的外置数据中心&#xff0c;主要用于海量日志数据的异地扩展备份管理&#xff0c;多条件组合的高效查询&#xff0c;统计和趋势报表生成&#xff0c;设备运行状态监控等功能。 0x02 漏洞概述 深信服数据中心管理系统DC存在XML外部实…

WPS-0DAY-20230809的分析和利用复现

WPS-0DAY-20230809的分析和初步复现 一、漏洞学习1、本地复现环境过程 2、代码解析1.htmlexp.py 3、通过修改shellcode拿shell曲折的学习msf生成sc 二、疑点1、问题2、我的测试测试方法测试结果 一、漏洞学习 强调&#xff1a;以下内容仅供学习和测试&#xff0c;一切行为均在…

Keil开发STM32单片机项目的三种方式

STM32单片机相比51单片机&#xff0c;内部结构复杂很多&#xff0c;因此直接对底层寄存器编码&#xff0c;相对复杂&#xff0c;这个需要我们了解芯片手册&#xff0c;对于复杂项目&#xff0c;这些操作可能需要反复编写&#xff0c;因此出现了标准库的方式&#xff0c;对寄存器…

ES中倒排索引机制

在ES的倒排索引机制中有四个重要的名词&#xff1a;Term、Term Dictionary、Term Index、Posting List。 Term&#xff08;词条&#xff09;&#xff1a;词条是索引里面最小的存储和查询单元。一段文本经过分析器分析以后就会输出一串词条。一般来说英文语境中词条是一个单词&a…

Docker容器与虚拟化技术:Docker资源控制、数据管理

目录 一、理论 1.资源控制 2.Docker数据管理 二、实验 1.Docker资源控制 2.Docker数据管理 三、问题 1.docker容器故障导致大量日志集满&#xff0c;造成磁盘空间满 2、当日志占满之后如何处理 四、总结 一、理论 1.资源控制 (1) CPU 资源控制 cgroups&#xff0…