power bi 中计算_Power BI中的期间比较

power bi 中计算

Just recently, I’ve come across a question on the LinkedIn platform, if it’s possible to create the following visualization in Power BI:

就在最近,我是否在LinkedIn平台上遇到了一个问题,是否有可能在Power BI中创建以下可视化文件:

Image for post

Since one of the common business requests is to perform different comparisons between various time periods, I would say that Power BI has a lot to offer in this regard. I’ve already explained some basic calculations related to Time Intelligence, but there are obviously a significant number of users who are not quite familiar with them.

由于常见的业务请求之一是在不同时间段之间执行不同的比较,因此我想说Power BI在这方面可以提供很多帮助。 我已经解释了一些与时间智能有关的基本计算方法 ,但是显然有很多用户对它们不太熟悉。

First of all, I would like to emphasize a great feature called “Quick Measures”, where you get out-of-the-box solutions for multiple commonly used calculations, such as: Year-to-date total, Quarter-to-date total, Month-to-date total, Year-over-year change, Rolling Average, etc.

首先,我想强调一个称为“快速度量”的出色功能,在该功能中,您将获得针对多种常用计算的开箱即用解决方案,例如:年初至今总计,季度初至今总数,本月至今的总数,同比变化,滚动平均值等。

In order for Quick Measures to work, you need to have a properly defined Date table.

为了使“快速度量”起作用,您需要具有正确定义的“ 日期”表 。

However, we will not use Quick Measures here to achieve our original goal, so let’s switch over to a Power BI Desktop and get into the action! As usual, I will use the Contoso database for demo purposes.

但是,在这里我们不会使用“快速测量”来实现我们的原始目标,因此让我们切换到Power BI Desktop并开始行动吧! 和往常一样,我将使用Contoso数据库进行演示。

制定基本措施 (Creating base measures)

The first step is to create a base measure to calculate Sales Amount:

第一步是创建一个基本度量来计算销售金额:

Sales Amt = SUM(FactOnlineSales[SalesAmount])

I will straight away create another measure, which will calculate same figures, but shifting one month back:

我将立即创建另一个度量,该度量将计算相同的数字,但将其移回一个月:

Sales Amt PM = CALCULATE([Sales Amt],
DATEADD(DimDate[Datekey],-1,MONTH)
)

There are multiple different ways to calculate this measure, but I prefer using DATEADD() function since it gives me more flexibility with shifting periods (that’s an official excuse:)…In reality, I’m coming from the SQL world, where DATEADD() is one of the most important functions when working with dates).

有多种不同的方法来计算此度量,但是我更喜欢使用DATEADD()函数,因为它为我提供了更灵活的移位周期(这是官方的借口:)……实际上,我来自SQL世界,其中DATEADD( )是处理日期时最重要的功能之一)。

Now, when I choose dates between November 17th and December 17th, I can see how my numbers correlate between themselves:

现在,当我选择11月17日至12月17日之间的日期时,可以看到我的数字之间的相互关系:

Image for post

As you may notice, our formulas work well — as intended, we see that Sales Amt PM for December 17th, matches Sales Amt for November 17th. Also, our Line chart nicely visualizes trends for easier comparison, while Card visuals in the upper left corner show Sales Amount for the selected period and difference between two periods which we are comparing.

您可能会注意到,我们的公式运行良好-按预期,我们看到12月17日的Sales Amt PM与11月17日的Sales Amt相匹配。 同样,我们的折线图很好地可视化了趋势,以便于比较,而左上角的卡片视觉效果则显示了所选期间的销售额和我们正在比较的两个期间之间的差异。

For those differences, I’ve created two additional measures:

对于这些差异,我创建了两个附加度量:

Sales Amt Diff PM = [Sales Amt] - [Sales Amt PM]
Sales Amt Diff PM % = DIVIDE([Sales Amt],[Sales Amt PM],BLANK()) - 1

Lower Card is conditionally formatted based on the values, so it goes red when we are performing worse than in the previous period, while it shows green when the outcome is the opposite:

Lower Card是根据值有条件格式化的,因此当我们的表现比上一时期差时,它会变成红色,而当结果相反时,它会变成绿色:

Image for post

添加更多成分 (Adding more ingredients)

Now, that’s fine and you saw how we could easily answer the original question. However, I wanted to add some more ingredients here and enable our users to choose between MoM (Month-over-month) and YoY (Year-over-year) comparison.

现在,这很好,您看到了我们如何轻松回答原始问题。 但是,我想在此处添加更多成分,并使我们的用户可以在MoM(按月)和同比(按年)比较之间进行选择。

In our example, if we choose again dates between November 17th and December 17th, instead of showing me values from the previous month (comparing December 17th and November 17th), with YoY comparison I want to compare December 17th 2009 with December 17th 2008!

在我们的示例中,如果我们再次选择11月17日至12月17日之间的日期,而不是显示上个月的值(与12月17日和11月17日相比),那么,我想将2009年12月17日与2008年12月17日进行比较!

So, let’s create a measure for this. Again, you can use different functions to achieve this, like SAMEPERIODLASTYEAR() function, but I want to keep consistency and therefore I will again use DATEADD():

因此,让我们为此制定一个措施。 同样,您可以使用不同的函数来实现这一点,例如SAMEPERIODLASTYEAR()函数,但是我想保持一致性,因此我将再次使用DATEADD():

Sales Amt PY = CALCULATE([Sales Amt],
DATEADD(DimDate[Datekey],-1,YEAR)
)

Same as for MoM calculations, two additional measures are needed to calculate differences for YoY figures:

与MoM计算相同,需要另外两项措施来计算同比数据差异:

Sales Amt Diff PY = [Sales Amt] - [Sales Amt PY]
Sales Amt Diff PY % = DIVIDE([Sales Amt],[Sales Amt PY],BLANK()) - 1

I will then create two bookmarks, so that users can navigate to MoM or YoY, by clicking on respective buttons:

然后,我将创建两个书签,以便用户可以通过单击相应的按钮来导航至MoM或YoY:

Image for post

By default, they should see MoM comparison, but as soon as they click on YoY button, the report will look slightly different:

默认情况下,他们应该看到MoM比较,但是一旦他们点击“同比”按钮,报告就会看起来有些不同:

Image for post

You can notice that numbers in the card visuals changed to reflect YoY difference calculation, while Line chart also shows different trends!

您会注意到,卡片视觉效果中的数字已更改为反映同比差异计算,而折线图也显示了不同的趋势!

Before we conclude, here is the final behavior of our report:

在得出结论之前,这是我们报告的最终行为:

Image for post

结论 (Conclusion)

As we saw, Power BI is quite a powerful tool when it comes to time intelligence calculations. Basically, all kinds of comparisons between different periods can be created — most common ones even without needing to write a single line of DAX!

如我们所见,在时间智能计算方面,Power BI是一个功能强大的工具。 基本上,可以创建不同时期之间的各种比较-即使不需要编写DAX行,也可以进行最常见的比较!

If you need to expand on built-in Quick Measures, there is a whole range of useful Time Intelligence functions. You can check all of them in more depth here.

如果您需要扩展内置的“快速测量”,则有很多有用的时间智能功能。 您可以在此处更深入地检查它们。

Thanks for reading!

谢谢阅读!

翻译自: https://towardsdatascience.com/period-comparisons-in-power-bi-7cc46705d663

power bi 中计算

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390757.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

-Hive-

Hive定义 Hive 是一种数据仓库技术,用于查询和管理存储在分布式环境下的大数据集。构建于Hadoop的HDFS和MapReduce上,用于管理和查询分析结构化/非结构化数据的数据仓库; 使用HQL(类SQL语句)作为查询接口;使用HDFS作…

CentOS 7 安装 JDK

2019独角兽企业重金招聘Python工程师标准>>> 1、下载oracle jdk 下载地址: http://www.oracle.com/technetwork/java/javase/downloads/index.html 选择同一协议,下载rpm格式版本jdk,或tar.gz格式jdk。 2、卸载本机openjdk 2.1、查…

如何进行数据分析统计_对您不了解的数据集进行统计分析

如何进行数据分析统计Recently, I took the opportunity to work on a competition held by Wells Fargo (Mindsumo). The dataset provided was just a bunch of numbers in various columns with no indication of what the data might be. I always thought that the analys…

020-Spring Boot 监控和度量

一、概述 通过配置使用actuator查看监控和度量信息 二、使用 2.1、建立web项目&#xff0c;增加pom <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency> 启动项目&a…

matplotlib布局_Matplotlib多列,行跨度布局

matplotlib布局For Visualization in Python, Matplotlib library has been the workhorse for quite some time now. It has held its own even after more nimble rivals with easier code interface and capabilities like seaborn, plotly, bokeh etc. have arrived on the…

Hadoop生态系统

大数据架构-Lambda Lambda架构由Storm的作者Nathan Marz提出。旨在设计出一个能满足实时大数据系统关键特性的架构&#xff0c;具有高容错、低延时和可扩展等特性。Lambda架构整合离线计算和实时计算&#xff0c;融合不可变性&#xff08;Immutability&#xff09;&#xff0c…

使用Hadoop所需要的一些Linux基础

Linux 概念 Linux 是一个类Unix操作系统&#xff0c;是 Unix 的一种&#xff0c;它 控制整个系统基本服务的核心程序 (kernel) 是由 Linus 带头开发出来的&#xff0c;「Linux」这个名称便是以 「Linus’s unix」来命名的。 Linux泛指一类操作系统&#xff0c;具体的版本有&a…

python多项式回归_Python从头开始的多项式回归

python多项式回归Polynomial regression in an improved version of linear regression. If you know linear regression, it will be simple for you. If not, I will explain the formulas here in this article. There are other advanced and more efficient machine learn…

回归分析_回归

回归分析Machine learning algorithms are not your regular algorithms that we may be used to because they are often described by a combination of some complex statistics and mathematics. Since it is very important to understand the background of any algorith…

数据科学还是计算机科学_何时不使用数据科学

数据科学还是计算机科学意见 (Opinion) 目录 (Table of Contents) Introduction 介绍 Examples 例子 When You Should Use Data Science 什么时候应该使用数据科学 Summary 摘要 介绍 (Introduction) Both Data Science and Machine Learning are useful fields that apply sev…

leetcode 523. 连续的子数组和

给你一个整数数组 nums 和一个整数 k &#xff0c;编写一个函数来判断该数组是否含有同时满足下述条件的连续子数组&#xff1a; 子数组大小 至少为 2 &#xff0c;且 子数组元素总和为 k 的倍数。 如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 …

Docker学习笔记 - Docker Compose

一、概念 Docker Compose 用于定义运行使用多个容器的应用&#xff0c;可以一条命令启动应用&#xff08;多个容器&#xff09;。 使用Docker Compose 的步骤&#xff1a; 定义容器 Dockerfile定义应用的各个服务 docker-compose.yml启动应用 docker-compose up二、安装 Note t…

线性回归算法数学原理_线性回归算法-非数学家的高级数学

线性回归算法数学原理内部AI (Inside AI) Linear regression is one of the most popular algorithms used in different fields well before the advent of computers. Today with the powerful computers, we can solve multi-dimensional linear regression which was not p…

Linux 概述

UNIX发展历程 第一个版本是1969年由Ken Thompson&#xff08;UNIX之父&#xff09;在AT& T贝尔实验室实现Ken Thompson和Dennis Ritchie&#xff08;C语言之父&#xff09;使用C语言对整个系统进行了再加工和编写UNIX的源代码属于SCO公司&#xff08;AT&T ->Novell …

泰坦尼克:机器从灾难中学习_用于灾难响应的机器学习研究:什么才是好的论文?...

泰坦尼克:机器从灾难中学习For the first time in 2021, a major Machine Learning conference will have a track devoted to disaster response. The 16th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2021) has a track on…

github持续集成的设置_如何使用GitHub Actions和Puppeteer建立持续集成管道

github持续集成的设置Lately Ive added continuous integration to my blog using Puppeteer for end to end testing. My main goal was to allow automatic dependency updates using Dependabot. In this guide Ill show you how to create such a pipeline yourself. 最近&…

shell与常用命令

虚拟控制台 一台计算机的输入输出设备就是一个物理的控制台 &#xff1b; 如果在一台计算机上用软件的方法实现了多个互不干扰独立工作的控制台界面&#xff0c;就是实现了多个虚拟控制台&#xff1b; Linux终端的工作方式是字符命令行方式&#xff0c;用户通过键盘输入命令进…

Linux文本编辑器

Linux文本编辑器 Linux系统下有很多文本编辑器。 按编辑区域&#xff1a; 行编辑器 ed 全屏编辑器 vi 按运行环境&#xff1a; 命令行控制台编辑器 vi X Window图形界面编辑器 gedit ed 它是一个很古老的行编辑器&#xff0c;vi这些编辑器都是ed演化而来。 每次只能对一…

Alpha第十天

Alpha第十天 听说 031502543 周龙荣&#xff08;队长&#xff09; 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV、ZQ、ZC负责前端开发&#xff0c;由JP和LL负责建库和服务器。界面开发的教辅材料是《第一行代码》&#xff0c;利用And…

Streamlit —使用数据应用程序更好地测试模型

介绍 (Introduction) We use all kinds of techniques from creating a very reliable validation set to using k-fold cross-validation or coming up with all sorts of fancy metrics to determine how good our model performs. However, nothing beats looking at the ra…