微观计量经济学_微观经济学与数据科学

微观计量经济学

什么是经济学和微观经济学? (What are Economics and Microeconomics?)

Economics is a social science concerned with the production, distribution, and consumption of goods and services. It studies how individuals, businesses, governments, and nations make choices on allocating resources to satisfy their wants and needs, trying to determine how these groups should organize and coordinate efforts to achieve maximum output.

经济学是一门社会科学,涉及商品和服务的生产,分配和消费。 它研究了个人,企业,政府和国家如何选择分配资源以满足其需求和需求,试图确定这些群体应如何组织和协调努力以实现最大产出。

One of the major types of economics is microeconomics. Microeconomics aims to model economic activities as an interaction of individual economic agents pursuing their private interests.

经济学的主要类型之一是微观经济学。 微观经济学旨在将经济活动建模为追求个体利益的个体经济主体的相互作用。

为什么微观经济学对数据科学家很重要? (Why is microeconomics important to data scientists?)

A lot of people used to ask me “So you turned economics into Data Science?” Well, both of them have a lot of common interests, if one who knows economics well can have a better understanding of business and machine learning algorithms.

很多人曾经问我:“所以你把经济学变成了数据科学?” 好吧,如果对经济学非常了解的人可以对商业和机器学习算法有更好的了解,那么他们就有很多共同的兴趣。

Image for post
here!这里 !

Even though those researchers have the same title “Data Scientist”, their jobs and their industries could be very different — healthcare, telecommunications sector, internet, energy sector, retail companies, the automotive industry. If we look through those companies and their products, we can see that their target is the consumers, users, or members. Therefore, understanding how individuals make decisions is very vital, and based on the relevant data, companies can put forward corresponding strategies to keep consumers’ utility. If microeconomics is a direction then data science is a car so we can drive the car and go to the given direction.

即使这些研究人员具有相同的称呼“数据科学家”,他们的工作和所从事的行业也可能大不相同-医疗保健,电信行业,互联网,能源行业,零售公司,汽车行业。 如果我们查看那些公司及其产品,我们可以看到他们的目标是消费者,用户或成员。 因此,了解个人如何做出决定非常重要,并且公司可以根据相关数据提出相应的策略来保持消费者的效用。 如果说微观经济学是一个方向,那么数据科学就是一辆汽车,那么我们就可以开车去往给定的方向。

My previous blog explained the relationship between consumer behavior and behavioral economics, and how to analyze consumer behavior data using python. This blog will present the relationships between microeconomics and data science.

我以前的博客解释了消费者行为与行为经济学之间的关系,以及如何使用python分析消费者行为数据。 该博客将介绍微观经济学与数据科学之间的关系。

个人决策 (Individual Decision Making)

Individual decision making is the fundamental theory in microeconomics. It focuses on how individual consumers and agents make decisions. Those individuals could be a person, a household, a firm, or the government. For example, in the retail industry, data scientists will personalize shopping itineraries based on consumer behavior data. Understanding consumer behavior is an important aspect of marketing and microeconomics can explain how potential customers will respond to new products or new services, why they demand, and what they do at particular price levels.

个人决策是微观经济学的基本理论。 它着重于个人消费者和代理商如何做出决定。 这些人可以是个人,家庭,公司或政府。 例如,在零售业中,数据科学家将根据消费者行为数据来个性化购物路线。 了解消费者的行为是营销的重要方面,微观经济学可以解释潜在客户如何对新产品或新服务做出React,他们为什么要求以及在特定价格水平下的行为。

需求,效用和支出 (Demand, Utility, and Expenditure)

For all individuals, their income and their demand for some goods are limited. From the point of consumers’ perspective, the utility function is an invisible relationship between price and income and also represents the satisfaction of their choices. Basically, utility function considers an individual who wants to maximize utility from a limited income. On the other hand, consumers want to lower their expenditures and maximize their satisfaction. The goal for researchers is to analyze how the price changes affect people’s demand and to calculate how much we need to compensate to keep all consumer's utility stable and constant. We can apply data science methods and combine microeconomics to explore those important insights through the data.

对于所有人而言,他们的收入和对某些商品的需求是有限的。 从消费者的角度来看,效用函数是价格和收入之间的隐形关系,也代表了他们选择的满意度。 基本上,效用函数考虑的是一个想要从有限的收入中最大化效用的个人。 另一方面,消费者希望降低支出并最大化满意度。 研究人员的目标是分析价格变化如何影响人们的需求,并计算我们需要补偿多少以保持所有消费者的效用稳定不变。 我们可以应用数据科学方法,并结合微观经济学来通过数据探索那些重要的见解。

From the point of a company’s perspective, how to set up a price for a good under competitive economy is a big question. We can see during Covid-19, lots of companies have had big sales many times in order to manage their inventory and minimize losses. The after-discount price always changes by time. For example, Lancome had a promotion — Buy One Get One Free. Under the competitive economy, after Lancome’s promotion ended, Estee Lauder had the same promotion — Buy One Get One Free. Based on consumer reactions, those companies will launch smarter strategies to face this economic crisis.

从公司的角度来看,如何在竞争经济条件下为商品设定价格是一个大问题。 我们可以看到在Covid-19期间,许多公司为了管理库存并最大程度地减少损失而多次取得了大笔销售。 折后价始终随时间变化。 例如,兰蔻有促销活动-买一送一。 在竞争激烈的经济环境下,兰蔻的促销结束后,雅诗兰黛也进行了同样的促销-买一送一。 根据消费者的React,这些公司将推出更明智的战略来应对这场经济危机。

Image for post

供应链,利润最大化,成本最小化 (Supply Chain, Profit maximization, Cost Minimization)

The supply chain is used to improve supply chain management (strategic decisions) for suppliers and customers of a company. It basically describes the business processes to satisfy a customer’s demands. Supply chains rely on data scientists who can capitalize on the data and microeconomics can help data scientists understand the relationship between profit maximization, cost minimization, and supply chain better.

供应链用于改善公司供应商和客户的供应链管理(战略决策)。 它基本描述了满足客户需求的业务流程。 供应链依赖可以利用数据的数据科学家,微观经济学可以帮助数据科学家更好地了解利润最大化,成本最小化和供应链之间的关系。

Image for post

结论 (Conclusion)

Microeconomics helps data scientists to understand consumers’ decisions and also helps companies to make strategic decisions (supply chains)based on consumers’ responses.

微观经济学可以帮助数据科学家了解消费者的决策,还可以帮助企业根据消费者的React做出战略决策(供应链)。

翻译自: https://medium.com/analytics-vidhya/microeconomics-and-data-science-f8f1cf49c9ee

微观计量经济学

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390022.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python基础综合练习

Pycharm开发环境设置与熟悉。 练习基本输入输出&#xff1a; print(你好,{}..format(name)) print(sys.argv) 库的使用方法&#xff1a; import ... from ... import ... 条件语句&#xff1a; if (abs(pos()))<1: break 循环语句&#xff1a; for i in range(5): while Tru…

安装mariadb、安装Apache

2019独角兽企业重金招聘Python工程师标准>>> 安装mariadb 安装mariadb的步骤与安装mysql的一样 下载二进制源码包 再用tar 解压&#xff0c;创建/data/mariadb目录和用户 初始化 编译启动脚本 启动 安装Apache Apache是软件基金会的名字&#xff0c;软件的名字叫htt…

惯性张量的推理_选择合适的intel工作站处理器进行张量流推理和开发

惯性张量的推理With the increasing number of data scientists using TensorFlow, it might be a good time to discuss which workstation processor to choose from Intel’s lineup. You have several options to choose from:随着使用TensorFlow的数据科学家数量的增加&am…

MongoDB数据库查询性能提高40倍

MongoDB数据库查询性能提高40倍 大家在使用 MongoDB 的时候有没有碰到过性能问题呢&#xff1f;下面这篇文章主要给大家分享了MongoDB数据库查询性能提高40倍的经历&#xff0c;需要的朋友可以参考借鉴&#xff0c;下面来一起看看吧。 前言 数据库性能对软件整体性能有着至关重…

牛客网_Go语言相关练习_选择题(2)

注&#xff1a;题目来源均出自牛客网。 一、选择题 Map&#xff08;集合&#xff09;属于Go的内置类型&#xff0c;不需要引入其它库即可使用。 Go-Map_菜鸟教程 在函数声明中&#xff0c;返回的参数要么都有变量名&#xff0c;要么都没有。 C选项函数声明语法有错误&#xff0…

Java常用的八种排序算法与代码实现

排序问题一直是程序员工作与面试的重点&#xff0c;今天特意整理研究下与大家共勉&#xff01;这里列出8种常见的经典排序&#xff0c;基本涵盖了所有的排序算法。 1.直接插入排序 我们经常会到这样一类排序问题&#xff1a;把新的数据插入到已经排好的数据列中。将第一个数和第…

熊猫ai智能机器人量化_机器学习中的熊猫是什么

熊猫ai智能机器人量化Machine learning is a complex discipline. The implementation of machine learning models is now far much easier than it used to be, this is as a result of Machine learning frameworks such as pandas. Wait!! isnt panda an animal? As I rec…

441. 排列硬币

441. 排列硬币 你总共有 n 枚硬币&#xff0c;并计划将它们按阶梯状排列。对于一个由 k 行组成的阶梯&#xff0c;其第 i 行必须正好有 i 枚硬币。阶梯的最后一行 可能 是不完整的。 给你一个数字 n &#xff0c;计算并返回可形成 完整阶梯行 的总行数。 示例 1&#xff1a;…

调用百度 Echarts 显示重庆市地图

因为 Echarts 官方不再提供地图数据的下载&#xff0c;在这里保存一份&#xff0c;供日后使用&#xff0c;重庆地图数据的 JSON 文件在 CSDN 上下载。 <!DOCTYPE html> <html style"height: 100%"><head><meta charset"utf-8"><…

JEESZ-SSO解决方案

2019独角兽企业重金招聘Python工程师标准>>> 第一节&#xff1a;单点登录简介 第一步&#xff1a;了解单点登录 SSO主要特点是: SSO应用之间使用Web协议(如HTTPS)&#xff0c;并且只有一个登录入口. SSO的体系中有下面三种角色: 1) User(多个) 2) Web应用(多个) 3) …

女朋友天天气我怎么办_关于我的天气很奇怪

女朋友天天气我怎么办带有扭曲的天气应用 (A Weather App with a Twist) Is My Weather Weird?™ is a weather app with a twist — it offers a simple answer to a common question we’ve all asked. To do this we look at how often weather like today’s used to happ…

5895. 获取单值网格的最小操作数

5895. 获取单值网格的最小操作数 给你一支股票价格的数据流。数据流中每一条记录包含一个 时间戳 和该时间点股票对应的 价格 。 不巧的是&#xff0c;由于股票市场内在的波动性&#xff0c;股票价格记录可能不是按时间顺序到来的。某些情况下&#xff0c;有的记录可能是错的…

为什么要用Redis

最近阅读了《Redis开发与运维》&#xff0c;非常不错。这里对书中的知识整理一下&#xff0c;方便自己回顾一下Redis的整个体系&#xff0c;来对相关知识点查漏补缺。我按照五点把书中的内容进行一下整理&#xff1a;为什么要选择Redis&#xff1a;介绍Redis的使用场景与使用Re…

区块链开发公司谈区块链在商业上的应用

对于近期正受科技界和资本市场关注的区块链行业&#xff0c;一句话概括说如果互联网技术解决的是通讯问题的话&#xff0c;区块链技术解决的是信任问题&#xff0c;其在商业领域应用如何呢&#xff1f;我们来从两个方面去进行剖析。 第一方面&#xff0c;区块链技术可以解决基础…

ORACLE1.21 PLSQL 01

-- 有了SQL 为什么还需要PL/SQL -- SQL功能很强大&#xff0c;但如果是单1sql语句&#xff0c;没有流程控制 -- PL/SQL 是什么&#xff1f; --不仅仅实现流程控制&#xff0c;同时保留SQL本身所有的功能 --还提供变量、常量等支持 --提供更多数据类型的支持 --第一&#xff0c;…

云原生数据库_数据标签竞赛云原生地理空间冲刺

云原生数据库STAC specification is getting closer to the ver 1.0 milestone, and as such the first virtual Cloud Native Geospatial Sprint is being organized next week. An outreach day is planned on Sep 8th with a series of talks and tutorials for everyone. R…

Linux 下的 hosts文件

2019独角兽企业重金招聘Python工程师标准>>> hosts 文件 目录在 /etc/hosts netstat -ntlp //linux 下查看端口 转载于:https://my.oschina.net/u/2494575/blog/1923074

DjangoORM字段介绍

转载于:https://www.cnblogs.com/cansun/p/8647371.html

黑客独角兽_双独角兽

黑客独角兽Preface前言 Last week my friend and colleague Srivastan Srivsan’s note on LinkedIn about Mathematics and Data Science opened an excellent discussion. Well, it is not something new; there were debates in the tech domain such as vim v.s emacs to …

38. 外观数列

38. 外观数列 给定一个正整数 n &#xff0c;输出外观数列的第 n 项。 「外观数列」是一个整数序列&#xff0c;从数字 1 开始&#xff0c;序列中的每一项都是对前一项的描述。 你可以将其视作是由递归公式定义的数字字符串序列&#xff1a; countAndSay(1) “1”countAnd…