unity3d 可视化编程
In the last blog, we have learned how to create “Dynamic Maps Using ggplot2“. In this article, we will explore more into the 3D visualization in R programming language by using the plot3d package.
在上一个博客中,我们学习了如何创建“ 使用ggplot2使用动态地图 ” 。 在本文中,我们将使用plot3d包对R编程语言中的3D可视化进行更多探索。
The plot3d package can be used to generate stunning 3-D plots in R. It can generate an interesting array of plots, but in this recipe, we will focus on creating 3-D scatterplots. These arise in situations where we have three variables, and we want to plot the triplets of values on the x–y–z space.
plot3d包可用于在R中生成令人惊叹的3-D图。它可以生成有趣的图阵列,但是在本食谱中,我们将重点介绍创建3-D散点图。 这些出现在我们有三个变量的情况下,我们想在x – y – z空间上绘制三元组值。
We will use a specific dataset to plot them into fancy plots using the plot3d package. The following steps are implemented to create 3D visualization in R.
我们将使用plot3d包使用特定的数据集将它们绘制成精美的图。 执行以下步骤以在R中创建3D可视化 。
Step 1: Install the required packages which are needed for 3D visualization in R.
步骤1:在R中安装3D可视化所需的必需软件包。
> install.packages("rgl")
Installing package into ‘C:/Users/admin/Documents/R/win-library/3.6’
(as ‘lib’ is unspecified)
trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.6/rgl_0.100.30.zip'
Content type 'application/zip' length 4253430 bytes (4.1 MB)
downloaded 4.1 MB
package ‘rgl’ successfully unpacked and MD5 sums checked
The downloaded binary packages are in
C:\Users\admin\AppData\Local\Temp\Rtmpymt5Jd\downloaded_packages
> install.packages("plot3D")
Installing package into ‘C:/Users/admin/Documents/R/win-library/3.6’
(as ‘lib’ is unspecified)
package ‘plot3D’ successfully unpacked and MD5 sums checked
The downloaded binary packages are in
C:\Users\admin\AppData\Local\Temp\Rtmpymt5Jd\downloaded_packages
Include the required libraries in the mentioned workspace.
在上述工作区中包括所需的库。
> library(plot3D)
> library(rgl)
Step 2: We will use the dataset named “income.csv” which includes all the necessary parameters which are needed for understanding income rates of every employee.
步骤2:我们将使用名为“ income.csv ”的数据集,其中包括了解每个员工的收入率所需的所有必要参数。
Step 3: Analyze the data structure of the dataset with the mentioned attributes.
步骤3:使用上述属性分析数据集的数据结构。
> str(income)
'data.frame': 30 obs. of 5 variables:
$ names : Factor w/ 30 levels "brady","brandy",..: 27 29 14 17 10 26 22 24 30 18 ...
$ Education: num 21.6 18.3 12.1 17 19.9 ...
$ Seniority: num 113 119 101 188 20 ...
$ Income : num 99.9 92.6 34.7 78.7 68 ...
$ gender : int 1 1 0 0 1 1 1 1 1 1 ...
Step 4: It is important to understand the five-point summary of data before proceeding further. Visualization requires a lookout on bivariate and univariate analysis which is clearly understood with a five-point summary of data.
步骤4:在继续进行之前,了解数据的五点摘要很重要。 可视化需要监视双变量和单变量分析,并通过五点数据摘要清楚地了解。
> summary(income)
names Education Seniority Income
brady : 1 Min. :10.00 Min. : 20.00 Min. :17.61
brandy : 1 1st Qu.:12.48 1st Qu.: 44.83 1st Qu.:36.39
brian : 1 Median :17.03 Median : 94.48 Median :70.80
brittany: 1 Mean :16.39 Mean : 93.86 Mean :62.74
bruce : 1 3rd Qu.:19.93 3rd Qu.:133.28 3rd Qu.:85.93
charles : 1 Max. :21.59 Max. :187.59 Max. :99.92
(Other) :24
gender
Min. :0.0000
1st Qu.:0.0000
Median :1.0000
Mean :0.6333
3rd Qu.:1.0000
Max. :1.0000
Step 5: Let us with bivariate analysis which focusses on 2-dimensional data and scatter plot is considered as an easy method to create the same.
步骤5:让我们进行专注于二维数据的双变量分析,而将散点图视为创建该变量的简便方法。
> scatter3D(x = inc$Education, y = inc$Income, z =inc$Seniority,
+ colvar = inc$Income,
+ pch = 16, cex = 1.5, xlab = "Education", ylab = "Income",
+ zlab = "Seniority", theta = 60, d = 2,clab = c("Income"),
+ colkey = list(length = 0.5, width = 0.5, cex.clab = 0.75,
+ dist = -.08, side.clab = 3)
+ ,main = "Relationship Between Income , Education and Seniority")
Here, we are plotting “Education” in the x-axis, “Income” in the y-axis and the “Seniority” level in the z-axis. The distinct legends are created based on the range of income parameters. The plot is helpful to show the relationship between Income, Education, and Society.
在这里,我们在x轴上绘制“教育”,在y轴上绘制“收入”,在z轴上绘制“高级”水平。 根据收入参数范围创建不同的图例。 该图有助于显示收入,教育和社会之间的关系。
We can add more effects to the mentioned 3D plot with plane surfaces and ranges depicted in a specific order. Consider that we want to implement a linear regression model to establish the relationship between Seniority, Education and Income we can create a predictive model for the same.
我们可以使用特定顺序描绘的平面和范围为上述3D图添加更多效果。 考虑到我们要实现线性回归模型以建立资历,教育和收入之间的关系,我们可以为此创建一个预测模型。
Step 6: Create a predictive model with the help of the RGL package. RGL is the 3D real-time rendering package in the R programming language. It provides high-level functions to create an interactive graph. To create a 3D plot of linear regression, we need to create a predictive model of the same.
步骤6:借助RGL软件包创建预测模型。 RGL是R编程语言中的3D实时渲染包。 它提供了高级功能来创建交互式图形。 要创建线性回归的3D图,我们需要创建相同的预测模型。
> lmin = lm(inc$Income~inc$Education+inc$Seniority)
> lmin
Call:
lm(formula = inc$Income ~ inc$Education + inc$Seniority)
Coefficients:
(Intercept) inc$Education inc$Seniority
-50.0856 5.8956 0.1729
> est = coef(lmin)
> a = est["inc$Education"]
> b = est["inc$Seniority"]
> c=-1
> d= est["(Intercept)"]
> est
(Intercept) inc$Education inc$Seniority
-50.0856387 5.8955560 0.1728555
> a
inc$Education
5.895556
> b
inc$Seniority
0.1728555
> c
[1] -1
> d
(Intercept)
-50.08564
Step 7: Once the required parameters for linear regression are taken into consideration, we can create an interactive graph where we plot the data points as a scattered graph and later embed the linear regression model in them.
步骤7:一旦考虑了线性回归所需的参数,我们就可以创建一个交互式图形,在其中将数据点绘制为散点图,然后将线性回归模型嵌入其中。
> plot3d(inc$Education,inc$Seniority,inc$Income, type = "s",
+ col = "blue", xlab = "Education",ylab = "Income",zlab =
+ "Seniority",box = FALSE)
Now we will embed the linear regression line as mentioned below:
现在,我们将嵌入线性回归线,如下所示:
planes3d(a,b,c,d, alpha = 0.5, col = "red")
Step 8: We can create a surface plot that defines the volume and intensity of the data. Following steps are implemented to create a specific plot as mentioned below:
步骤8:我们可以创建一个表面图来定义数据的数量和强度。 执行以下步骤来创建特定图,如下所述:
> inc= read.csv("income2.csv")
> View(inc)
> row.names(inc)= inc$names
> inc
names Education Seniority Income gender
tim tim 21.58621 113.10345 99.91717 1
tom tom 18.27586 119.31034 92.57913 1
kim kim 12.06897 100.68966 34.67873 0
mary mary 17.03448 187.58621 78.70281 0
hary hary 19.93103 20.00000 68.00992 1
thomas thomas 18.27586 26.20690 71.50449 1
peter peter 19.93103 150.34483 87.97047 1
romeo romeo 21.17241 82.06897 79.81103 1
wald wald 20.34483 88.27586 90.00633 1
matt matt 10.00000 113.10345 45.65553 1
pam pam 13.72414 51.03448 31.91381 0
pamela pamela 18.68966 144.13793 96.28300 0
larry larry 11.65517 20.00000 27.98250 1
karl karl 16.62069 94.48276 66.60179 1
brian brian 10.00000 187.58621 41.53199 1
dan dan 20.34483 94.48276 89.00070 1
sim sim 14.13793 20.00000 28.81630 0
kristin kristin 16.62069 44.82759 57.68169 0
chiu chiu 16.62069 175.17241 70.10510 1
bruce bruce 20.34483 187.58621 98.83401 1
brady brady 18.27586 100.68966 74.70470 1
brandy brandy 14.55172 137.93103 53.53211 0
charles charles 17.44828 94.48276 72.07892 1
timothy timothy 10.41379 32.41379 18.57067 0
jerry jerry 21.58621 20.00000 78.80578 1
garry garry 11.24138 44.82759 21.38856 1
jena jena 19.93103 168.96552 90.81404 0
ram ram 11.65517 57.24138 22.63616 1
brittany brittany 12.06897 32.41379 17.61359 0
milly milly 17.03448 106.89655 74.61096 0
Here, we convert the dataset into a separate vector and we also created the index based on the names of candidates. Text3d is the function that adds text to the plane surface. The text represents actual data representation. As we converted the row names with names of candidates, it becomes easy to display text in the 3D plot.
在这里,我们将数据集转换为单独的向量,并且还基于候选名称创建了索引。 Text3d是将文本添加到平面的功能。 文本表示实际数据表示。 当我们用候选名称转换行名称时,在3D图中显示文本变得很容易。
> text3D(x = inc$Education, y = inc$Income, z =inc$Seniority,
+ colvar = inc$Income,labels= row.names(inc),
+ pch = 16, cex = 0.8, xlab = "Education", ylab = "Income",
+ zlab = "Seniority", theta = 60, d = 2,clab = c("Income"),
+ colkey = list(length = 0.5, width = 0.5, cex.clab = 0.75,
+ dist = -.08, side.clab = 3)
+ ,bty = "g")
Step 9: We can convert the values in proper labels with distinct colors. This helps to visualize the 3D plot more easily and distinctly with a specific color range.
步骤9:我们可以将值转换为具有不同颜色的适当标签。 这有助于在特定颜色范围内更轻松,更清晰地可视化3D图。
> text3D(x = inc$Education, y = inc$Income, z =inc$Seniority,
+ colvar= inc$gender,col = c("red","black"),labels= row.names(inc),
+ pch = 16, cex = 0.8,xlab = "Education", ylab = "Income",
+ zlab = "Seniority", theta = 60, d = 2,clab = c("Income"),
+ bty = "g", colkey = FALSE)
> legend("topright", fill = c("red", "black"), legend=
+ c("Female","Male"), bty = "n")
等高线图 (Contour Plots)
Contour plots visually represent the intensity of the plot. The color and graphical representation help in the visual analysis of data.
等高线图直观地表示了该图的强度。 颜色和图形表示有助于数据的可视化分析。
> x = y = seq(-3,3, length.out = 10)
> x
[1] -3.0000000 -2.3333333 -1.6666667 -1.0000000 -0.3333333 0.3333333
[7] 1.0000000 1.6666667 2.3333333 3.0000000
> y
[1] -3.0000000 -2.3333333 -1.6666667 -1.0000000 -0.3333333 0.3333333
[7] 1.0000000 1.6666667 2.3333333 3.0000000
> f = function(x,y){ z= (y^2-x^2)}
> m = outer(x,y,f)
>
> image2D(m)
> image2D(m, contour = TRUE)
>
> persp3D(z = m, contour = TRUE)
> persp3D(z = volcano, contour = TRUE)
>
> library(rgl)
> c = terrain.colors(5)
> persp3d(z = volcano, contour = TRUE, col = c)
The output of the contour plot is mentioned below:
等高线图的输出如下所述:
The interactive 3d plot is mentioned below:
交互式3d图如下所示:
We can also create a plot with an animation feature which increases the interactive rate. For this, it is important to install an “animation” package which helps in creating the plots as desired.
我们还可以创建带有动画功能的绘图,以提高交互速率。 为此,重要的是安装一个“动画”程序包,该程序包可以帮助创建所需的绘图。
> install.packages("plotrix")
Installing package into ‘C:/Users/admin/Documents/R/win-library/3.6’
(as ‘lib’ is unspecified)
trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.6/plotrix_3.7-7.zip'
Content type 'application/zip' length 1132324 bytes (1.1 MB)
downloaded 1.1 MB
package ‘plotrix’ successfully unpacked and MD5 sums checked
The downloaded binary packages are in
C:\Users\admin\AppData\Local\Temp\RtmpSCUS7b\downloaded_packages
>
> install.packages("animation")
Installing package into ‘C:/Users/admin/Documents/R/win-library/3.6’
(as ‘lib’ is unspecified)
trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.6/animation_2.6.zip'
Content type 'application/zip' length 548202 bytes (535 KB)
downloaded 535 KB
package ‘animation’ successfully unpacked and MD5 sums checked
The downloaded binary packages are in
C:\Users\admin\AppData\Local\Temp\RtmpSCUS7b\downloaded_packages
>
> library(plot3D)
> library(plotrix)
Attaching package: ‘plotrix’
The following object is masked from ‘package:rgl’:
mtext3d
> library(animation)
>
> x = y = seq(0,2*pi, length.out = 100)
>
> z = mesh(x,y)
> u = z$x
> v = z$y
>
> m= (sin(u)*sin(2*v)/2)
> n = (sin(2*u)*cos(v)*cos(v))
> o = (cos(2*u)*cos(v)*cos(v))
>
> surf3D(m, n,o, colvar = o, border = "black",colkey = FALSE,box = TRUE)
>
> surf3D(m, n,o, colvar = o, border = "black",colkey = TRUE, box = TRUE,theta = 60)
>
> surf3D(m, n,o, colvar = o, border = "black",colkey = TRUE,box = TRUE,theta = 100)
>
> library("animation")
> saveHTML({
+ for (i in 1:100 ){
+ x = y = seq(0,2*pi, length.out = 100)
+ z = mesh(x,y)
+ u = z$x
+ v = z$y
+ m= (sin(u)*sin(2*v)/2)
+ n = (sin(2*u)*cos(v)*cos(v))
+ o = (cos(2*u)*cos(v)*cos(v))
+ surf3D(m, n,o, colvar = o, border = "black",colkey = FALSE,
+ theta = i, box = TRUE)
+ }
+ },interval = 0.1, ani.width = 500, ani.height = 1000)
The ranges of the graphs are depicted below:
图的范围如下所示:
The file is saved with .html extension and represents the graphical animation of the values in three co-ordinates.
该文件以.html扩展名保存,并以三个坐标表示值的图形动画。
So, this was all about 3D visualization in R programming!
因此,这一切都与R编程中的3D可视化有关!
In the next section, we will be going to learn about Data Wrangling and Visualization in R programming language.
在下一节中,我们将学习R编程语言中的数据整理和可视化 。
Originally published https://blog.eduonix.com on March 27, 2020
最初 于 2020 年 3月27日发布 https://blog.eduonix.com
翻译自: https://medium.com/eduonix/r-programming-series-3d-visualization-in-r-3f9280d7ddb4
unity3d 可视化编程
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/388572.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!