机器学习:特征工程之特征预处理

目录

特征预处理

1、简述

2、内容

3、归一化

3.1、鲁棒性

3.2、存在的问题

4、标准化


⭐所属专栏:人工智能

文中提到的代码如有需要可以私信我发给你😊

特征预处理

1、简述

什么是特征预处理:scikit-learn的解释:

provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more suitable for the downstream estimators.

翻译过来:通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程

详述:

特征预处理是机器学习和数据分析中的一个重要步骤,它旨在将原始数据转换为适合机器学习算法的形式,以提高模型的性能和稳定性。特征预处理涵盖了一系列数据转换和处理操作,用于清洗、归一化、缩放、编码等,以确保输入特征的质量和一致性。以下是特征预处理的一些常见操作和方法:

  1. 数据清洗和处理:处理缺失值、异常值和噪声,确保数据的完整性和准确性。常见的方法包括填充缺失值、平滑噪声、剔除异常值等。
  2. 特征缩放:将不同尺度的特征缩放到相似的范围,以避免某些特征对模型的影响过大。常见的特征缩放方法有标准化(Z-score标准化)和归一化(Min-Max缩放)。
  3. 特征选择:选择对目标变量有重要影响的特征,减少维度和噪声,提高模型的泛化能力。常见的特征选择方法有基于统计指标的方法(如方差选择、卡方检验)、基于模型的方法(如递归特征消除)、以及基于嵌入式方法(如L1正则化)。
  4. 特征转换:将原始特征转换为更适合模型的形式,如多项式特征、交叉特征、主成分分析(PCA)等。这可以帮助模型更好地捕捉数据的模式和结构。
  5. 特征编码:将非数值型的特征转换为数值型的形式,以便机器学习算法处理。常见的编码方法有独热编码(One-Hot Encoding)和标签编码(Label Encoding)。
  6. 文本特征提取:将文本数据转换为数值特征表示,如词袋模型、TF-IDF特征提取等,以便用于文本分析和机器学习。
  7. 特征组合和交叉:将多个特征进行组合或交叉,创建新的特征以捕捉更多的信息。这有助于挖掘特征之间的相互作用。
  8. 数据平衡处理:在处理不平衡数据集时,可以使用欠采样、过采样等方法来平衡正负样本的数量,以避免模型偏向于多数类。

特征预处理的目标是使数据更适合机器学习模型,提高模型的性能和稳定性,并且能够更好地捕捉数据的特征和模式。正确的特征预处理可以显著影响机器学习模型的结果和效果。不同的数据类型和问题可能需要不同的特征预处理方法,因此在进行特征预处理时需要根据具体情况进行选择和调整。

2、内容

包含内容:数值型数据的无量纲化:归一化、标准化 (二者放在后面详述)

什么是无量纲化:

无量纲化(Dimensionality Reduction)是特征工程的一部分,指的是将数据特征转换为合适的尺度或形式,以便更好地适应机器学习算法的要求。无量纲化的目的是减少特征的维度,同时保留数据中的重要信息,从而降低计算成本、避免维度灾难,并提高模型的性能和泛化能力。

无量纲化可以分为两种常见的方法:

①特征缩放(Feature Scaling):特征缩放是将特征的数值范围调整到相似的尺度,以便机器学习算法更好地工作。特征缩放的常见方法包括归一化和标准化。

        归一化(Min-Max Scaling):将特征缩放到一个特定的范围,通常是[0, 1]。

        标准化(Z-score Scaling):将特征缩放为均值为0,标准差为1的分布。

②降维(Dimensionality Reduction):降维是将高维特征空间映射到低维空间,以减少特征数量并去除冗余信息,从而提高计算效率和模型性能。常见的降维方法包括主成分分析(PCA)和线性判别分析(LDA)等。

        主成分分析(PCA):通过线性变换将原始特征投影到新的坐标轴上,使得投影后的数据具有最大的方差。这些新坐标轴称为主成分,可以按照方差的大小选择保留的主成分数量,从而降低数据的维度。

        线性判别分析(LDA):在降维的同时,尽可能地保留类别之间的区分性信息,适用于分类问题。

无量纲化可以帮助解决特征维度不一致、尺度不同等问题,使得机器学习算法能够更准确地学习数据的模式和结构。选择适当的无量纲化方法取决于数据的特点、问题的要求以及模型的性能。

特征预处理使用的API:sklearn.preprocessing

为什么我们要进行归一化/标准化?

特征的单位或者大小相差较大,或者某特征的方差相比其他的特征要大出几个数量级,容易影响(支配)目标结果,使得一些算法无法学习到其它的特征

3、归一化

定义:通过对原始数据进行变换把数据映射到(默认为[0,1])之间

公式:

API:

sklearn.preprocessing.MinMaxScaler (feature_range=(0,1)… )

MinMaxScalar.fit_transform(X)

X:numpy array格式的数据[n_samples,n_features]

返回值:转换后的形状相同的array

下面分析会用到一组数据,名为dating.txt。展现如下:

实现:

关键代码解读:
    transfer = MinMaxScaler(feature_range=(2, 3)):
        实例化一个MinMaxScaler转换器对象,其中feature_range=(2, 3)表示将数据缩放到范围为[2, 3]之间。
    data = transfer.fit_transform(data[['milage', 'Liters', 'Consumtime']]):
        使用fit_transform方法将选定的特征('milage', 'Liters', 'Consumtime')进行最小-最大归一化处理。
        fit_transform方法首先计算出特征的最小值和最大值,然后将数据进行线性缩放,使其在指定的范围内。

# -*- coding: utf-8 -*-
# @Author:︶ㄣ释然
# @Time: 2023/8/15 21:52
import pandas as pd
from sklearn.preprocessing import MinMaxScaler  # 最大最小值归一化转换器'''
归一化处理。
关键代码解读:transfer = MinMaxScaler(feature_range=(2, 3)):实例化一个MinMaxScaler转换器对象,其中feature_range=(2, 3)表示将数据缩放到范围为[2, 3]之间。data = transfer.fit_transform(data[['milage', 'Liters', 'Consumtime']]):使用fit_transform方法将选定的特征('milage', 'Liters', 'Consumtime')进行最小-最大归一化处理。fit_transform方法首先计算出特征的最小值和最大值,然后将数据进行线性缩放,使其在指定的范围内。
'''
def min_max_demo():"""归一化演示"""data = pd.read_csv("data/dating.txt",delimiter="\t")print(data)# 1、实例化一个转换器类transfer = MinMaxScaler(feature_range=(2, 3))# 2、调用fit_transformdata = transfer.fit_transform(data[['milage', 'Liters', 'Consumtime']])print("最小值最大值归一化处理的结果:\n", data)if __name__ == '__main__':min_max_demo()

打印结果:

手动计算(取前9行数据):

计算坐标为(0,0)的元素,总的计算流程为:[(40920-14488)/(75136-14488)] * (3-2)+2 = 2.435826408≈2.43582641

该结果与程序吻合!!

3.1、鲁棒性

鲁棒性(Robustness)是指在面对异常值、噪声和其他不完美情况时,系统能够继续正常工作并保持良好性能的能力。在数据分析、统计学和机器学习中,鲁棒性是一个重要的概念,指的是算法或方法对异常值和数据扰动的敏感程度。一个鲁棒性强的方法在存在异常值或数据变动时能够保持稳定的性能,而鲁棒性较差的方法可能会对异常值产生过度敏感的响应。

在数据处理和分析中,鲁棒性的重要性体现在以下几个方面:

  1. 异常值处理:鲁棒性的方法能够有效地识别和处理异常值,而不会因为异常值的存在导致结果的严重偏差。
  2. 模型训练:在机器学习中,使用鲁棒性的算法可以减少异常值对模型训练的影响,防止过拟合,并提高模型的泛化能力。
  3. 特征工程:在特征工程过程中,选择鲁棒性的特征提取方法可以确保提取的特征对异常值不敏感。
  4. 统计分析:鲁棒性的统计方法能够减少异常值对统计分析结果的影响,使得分析结果更可靠。

一些常见的鲁棒性方法包括:

  • 中位数(Median):在数据中,中位数对异常值的影响较小,相对于平均值具有更强的鲁棒性。
  • 百分位数(Percentiles):百分位数可以帮助识别数据分布的位置和离散程度,对异常值的影响较小。
  • Z-score标准化:Z-score标准化将数据转化为均值为0、标准差为1的分布,能够对抗异常值的影响。
  • IQR(四分位距)方法:使用四分位距来定义异常值的界限,对极端值具有一定的容忍度。
  • 鲁棒性回归:使用鲁棒性回归方法可以减少异常值对回归模型的影响。

总之,鲁棒性是数据分析和机器学习中一个重要的考虑因素,能够保证在现实世界中面对多样性和不确定性时,方法和模型仍能保持有效性和稳定性。

3.2、存在的问题

使用归一化处理,如果数据中异常点较多,会有什么影响?

在数据中存在较多异常点的情况下,使用归一化处理可能会受到一些影响。归一化是将数据缩放到特定范围内的操作,但异常点的存在可能会导致以下影响:

  1. 异常点的放大:归一化可能会导致异常点在缩放后的范围内被放大。如果异常点的值较大,归一化后它们可能会被映射到特定范围的边缘,从而导致数据在正常值范围内分布不均匀。
  2. 降低数据的区分性:异常点可能导致归一化后的数据失去一部分原始数据的分布特征。数据特征的差异性可能被模糊化,从而降低模型的区分能力和准确性。
  3. 对模型的影响:在机器学习中,模型通常会受到输入数据的影响。异常点可能会干扰模型的训练,使其难以捕捉正常数据的模式,导致模型的性能下降。
  4. 过拟合的风险:如果异常点被放大或影响了数据的分布,模型可能会过拟合异常点,而忽略了正常数据的重要特征。

为了应对异常点对归一化处理的影响,可以考虑以下策略:

  • 异常点检测和处理:在进行归一化之前,首先要进行异常点检测,并根据异常点的性质和数量采取适当的处理措施。可以选择删除异常点、使用异常点修正方法或将异常点映射到更合理的范围。
  • 使用鲁棒性方法:某些归一化方法对异常点的影响较小,例如中心化和缩放(例如Z-score标准化),它们对异常值的影响较小,因为它们基于数据的分布特性。
  • 尝试其他特征预处理方法:如果异常点较多且归一化效果不好,可以尝试其他特征预处理方法,如对数变换、截断、缩尾等。

总之,处理异常点是特征预处理的重要步骤,需要根据数据的特点和问题的需求来选择适当的策略。

这里使用标准化解决这个问题

4、标准化

定义:通过对原始数据进行变换把数据变换到均值为0,标准差为1范围内

公式:

标准差:

        

所以实际上标准化的公式为:

         

参数如下:

        x为当前值

        mean为平均值

        N 表示数据的总个数

        xi 表示第 i 个数据点

        μ 表示数据的均值

归一化的异常点:

标准化的异常点:

对于归一化来说:如果出现异常点,影响了最大值和最小值,那么结果显然会发生改变

对于标准化来说:如果出现异常点,由于具有一定数据量,少量的异常点对于平均值的影响并不大,从而方差改变较小

API:

sklearn.preprocessing.StandardScaler( )

处理之后每列来说所有数据都聚集在均值0附近标准差差为1

StandardScaler.fit_transform(X)

X:numpy array格式的数据[n_samples,n_features]

返回值:转换后的形状相同的array

import pandas as pd
from sklearn.preprocessing import StandardScaler  # 标准化'''
sklearn.preprocessing.StandardScaler( ) 处理之后每列来说所有数据都聚集在均值0附近标准差差为1StandardScaler.fit_transform(X)X:numpy array格式的数据[n_samples,n_features]返回值:转换后的形状相同的array
'''
def stand_demo():"""标准化演示:return: None"""data = pd.read_csv("data/dating.txt", delimiter="\t")print(data)# 1、实例化一个转换器类transfer = StandardScaler()# 2、调用fit_transformdata = transfer.fit_transform(data[['milage', 'Liters', 'Consumtime']])print("标准化的结果:\n", data)print("每一列特征的平均值:\n", transfer.mean_)print("每一列特征的方差:\n", transfer.var_)if __name__ == '__main__':stand_demo()

输出结果:

手动计算验证(取前8行数据),公式回顾如下:

手动计算坐标为(0,0)的数据的标准化数据:

        40920-43318.375=-2398.375

        N=8,μ=43318.375 -> (40920-43318.375)^2+(14488-43318.375)^2+(26052-43318.375)^2+(75136-43318.375)^2+(38344-43318.375)^2+(72993-43318.375)^2+(35948-43318.375)^2+(42666-43318.375)^2=3107507487.875

        3107507487.875 / 8 = 388438435.984375

        根号下388438435.984375 = 19708.84156880802

最终:

        x-mean=-2398.375

        标准差=19708.84156880802

最后标准化后的数据结果为:-2398.375 / 19708.84156880802 = 0.121690307957813291 ≈ 0.12169031

与程序结果完全吻合!

标准化总结:在已有样本足够多的情况下比较稳定,适合现代嘈杂大数据场景。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/38830.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux系统服务学习(六)FTP服务学习

文章目录 FTP、NFS、SAMBA系统服务一、FTP服务概述1、FTP服务介绍2、FTP服务的客户端工具3、FTP的两种运行模式(了解)☆ 主动模式☆ 被动模式 4、搭建FTP服务(重要)5、FTP的配置文件详解(重要) 二、FTP任务…

Python基础语法入门(第二十天)——文件操作

一、基础内容 在Python中,路径可以以不同的表现形式进行表示。以下是一些常用的路径表现形式: 1. 绝对路径:它是完整的路径,从根目录开始直到要操作的文件或文件夹。在Windows系统中,绝对路径以盘符开始,…

【学会动态规划】环形子数组的最大和(20)

目录 动态规划怎么学? 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后: 动态规划怎么学? 学习一个算法没有捷径,更何况是学习动态规划, 跟我…

高层建筑全景vr火灾隐患排查模拟培训软件助力群众防范火灾伤害

随着城市化进程的加快,楼宇建筑的数量也在不断增加。然而,楼宇消防安全问题也日益突出。为了提高楼宇员工和居民的消防安全意识,楼宇VR消防安全教育培训应运而生。VR安全培训公司深圳华锐视点制作的楼宇vr消防安全教育培训,包括消…

谷粒商城第十一天-完善商品分组(主要添上关联属性)

目录 一、总述 二、前端部分 2.1 改良前端获取分组列表接口及其调用 2.2 添加关联的一整套逻辑 三、后端部分 四、总结 一、总述 前端部分和之前的商品品牌添加分类差不多。 也是修改一下前端的分页获取列表的接口,还有就是加上关联的那一套逻辑,…

nginx负载均衡与反向代理与正向代理

负载均衡:通过反向代理来实现 正向代理的配置方法。 正向代理: 工作原理:用户端直接访问不了,需要通过代理服务器来访问web服务器,用户端先访问代理服务器,再访问web服务器。web服务器响应给代理服务器&a…

【C语言】调试技巧

目录 一、什么是bug? 二、调试 1.一般调试的步骤 2.Debug 和 Release 三、调试环境准备 四、调试时要查看的信息 1.查看临时变量的值 2.查看内存信息 3.查看调用堆栈 4.查看反汇编信息 5.查看寄存器 五、练习 六、常见的coding技巧 七、const的作用 八、编程常见…

如何应用项目管理软件进行敏捷开发管理

敏捷开发(Agile Development)是一种软件开发方法论,强调在不断变化的需求和环境下,通过迭代、协作和自适应的方式来开发软件。敏捷方法的目标是提供更快、更灵活、更高质量的软件交付,以满足客户需求并实现项目成功。 …

服务器数据恢复-EqualLogic存储RAID5数据恢复案例

服务器数据恢复环境: 一台DELL EqualLogic存储中有一组由16块SAS硬盘组建的RAID5阵列。存储存放虚拟机文件,采用VMFS文件系统,划分了4个lun。 服务器故障&检测&分析: 存储设备上有两个硬盘指示灯显示黄色,存储…

1022.从根到叶的二进制之和

目录 一、题目 二、代码 一、题目 二、代码 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nu…

vue项目的实用性总结

1、mockjs 基本使用 ★ 安装:npm i mockjs。 在src/mock/index.js内容如下: import Mock from mockjs //制订拦截规则 Mock.mock(http://www.0313.com,get,你好啊)记得在main.js中引入一下,让其参与整个项目的运行。 只要发出去的是get类型…

家纺行业小程序商城搭建指南

家纺行业作为一个不可或缺的消费领域,近年来备受关注。随着互联网的发展,小程序商城成为家纺行业拓展市场的新利器。搭建一个家纺行业小程序商城并不是一件困难的事情,只需要按照以下几个步骤进行操作,就能轻松上手。 首先&#x…

UI设计师个人工作总结范文

UI设计师个人工作总结范文篇一 感受到了领导们“海纳百川”的胸襟,感受到了作为广告人“不经历风雨,怎能见彩虹”的豪气,也体会到了重庆广告从业人员作为拓荒者的艰难和坚定(就目前国内广告业而言,我认为重庆广告业尚在发展阶段并…

FreeRTOS(独立看门狗监测任务执行与低功耗Tickless模式)

资料来源于硬件家园:资料汇总 - FreeRTOS实时操作系统课程(多任务管理) 目录 一、独立看门狗介绍 二、看门狗监测多任务执行思路 1、监测目标 2、监测方案 3、应用注意事项 三、看门狗监测多任务编程 1、STM32cubeMX配置 2、代码编写 四、低功耗Tickless模…

基于HTML+CSS+Echarts大屏数据可视化集合共99套

基于HTMLCSSEcharts大屏数据可视化集合共99套 一、介绍二、展示1.大数据展示系统2.物流订单系统3.物流信息系统4.办税渠道监控平台5.车辆综合管控平台 三、其他系统实现四、获取源码 一、介绍 基于HTML/CSS/Echarts的会议展览、业务监控、风险预警、数据分析展示等多种展示需求…

React 全栈体系(一)

第一章 React入门 一、React简介 1. 是什么? 是一个将数据渲染为HTML视图的开源JavaScript库。 2. 谁开发的? 由Facebook开源 3. 为什么要学? 原生JavaScript操作DOM繁琐,效率低(DOM-API 操作 UI) 使…

论文阅读——Adversarial Eigen Attack on Black-Box Models

Adversarial Eigen Attack on Black-Box Models 作者:Linjun Zhou, Linjun Zhou 攻击类别:黑盒(基于梯度信息),白盒模型的预训练模型可获得,但训练数据和微调预训练模型的数据不可得&#xff…

2023年国赛数学建模思路 - 复盘:光照强度计算的优化模型

文章目录 0 赛题思路1 问题要求2 假设约定3 符号约定4 建立模型5 模型求解6 实现代码 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 问题要求 现在已知一个教室长为15米,宽为12米&…

Thymeleaf快速入门及其注意事项

😀前言 本篇博文是关于Thymeleaf的基本介绍,希望你能够喜欢😊 🏠个人主页:晨犀主页 🧑个人简介:大家好,我是晨犀,希望我的文章可以帮助到大家,您的满意是我的…

Dev-C++

文章目录 介绍使用教程常用快捷键文件部分格式部分行操作跳转部分显示部分运行部分调试部分 调试流程 扩展增加编译选项开启优化显示最多警告信息生成调试信息 编译小 trick开大栈定义宏代码格式化 美化字体主题 介绍 Dev-C 是一套用于开发 C/C 程序的自由的集成开发环境&…