软件测试框架课程考试_那考试准备课程值得吗?

软件测试框架课程考试

By Levi Petty

李维·佩蒂(Levi Petty)

This project uses a public, synthesized exam scores dataset from Kaggle to analyze average scores in Math, Reading, and Writing subject areas, relative to the student’s parents’ level of education and whether the student took a preparation course before the exam. I used Deephaven’s R integration, which gave me access to cool plotting libraries. Additionally, users can see the code and plots step-by-step, yielding more detailed information.

Ť他的项目采用的是公开的,合成的考试成绩,从数据集Kaggle分析数学,阅读和写作学科领域的平均成绩,相对于学生的父母的受教育程度,以及是否该学生拿了准备课程在考试前。 我使用了Deephaven的R集成,这使我可以访问很酷的绘图库。 此外,用户可以查看代码并逐步进行绘制,从而获得更详细的信息。

我的过程 (My Process)

配置变量 (Configuration Variables)

We begin by defining some configuration variables:

我们首先定义一些配置变量:

  • home: Your home directory

    home :您的主目录

  • system: Deephaven system to connect to (configured in the launcher)

    系统 :要连接的Deephaven系统(在启动器中配置)

  • keyfile: Key file used to authenticate when connecting to the Deephaven system

    keyfile :连接到Deephaven系统时用于认证的密钥文件

  • workerHeapGB: Gigabytes of heap for the Deephaven query worker

    workerHeapGB :Deephaven查询工作者的千兆字节堆

  • jvmHeapGB: Gigabytes of heap for the local Java Virtual Machine (JVM)

    jvmHeapGB :本地Java虚拟机(JVM)的千兆字节堆

  • workerHost: host to run the Deephaven query worker on

    workerHost :在其上运行Deephaven查询worker的主机

连接到Deephaven查询工作者 (Connecting to the Deephaven Query Worker)

After setting up the configuration variables, the first step is to connect R to a Deephaven query worker. To determine the proper value for JAVA_HOME, run R CMD javareconf from the command line.

设置配置变量后,第一步是将R连接到Deephaven查询工作程序。 要确定JAVA_HOME的正确值,请从命令行运行R CMD javareconf

在表中加载 (Loading in the Table)

Prior to writing my code, I downloaded the StudentsPerformance.csv file from Kaggle and created a new user table so that I could access the table without needing to reload the file into a variable every time I executed my code.

在编写代码之前,我从Kaggle下载了StudentsPerformance.csv文件并创建了一个新的用户表,这样我就可以访问该表,而无需每次执行代码时都将文件重新加载到变量中。

创建初始表 (Creating The Initial Table)

After all this setup, my next step is to use Deephaven’s filtering tools to get the relevant data from this new user table and create an initial data table with each student’s parental level of education, whether they took a test prep course, and their scores in each of three subjects: Math, Reading, and Writing.

完成所有这些设置后,我的下一步就是使用Deephaven的过滤工具从此新用户表中获取相关数据,并使用每个学生的父母的受教育程度,他们是否参加了考试预备课程以及他们的分数来创建初始数据表。三个科目中的每一个:数学,阅读和写作。

Image for post

增加教育水平的排名 (Adding Rankings for Education Levels)

Next, I use a map to add rankings for each education level to the data table so that I can order the plots by education level instead of alphabetically. Each education level is given its own corresponding ranking from 0–5, with higher education levels having higher numbers for their ranking.

接下来,我使用地图将每个受教育程度的排名添加到数据表,以便我可以按受教育程度而不是按字母顺序对图进行排序。 每个教育级别都有自己从0-5的相应排名,而高等教育级别的排名则更高。

Image for post

初始图 (Initial Plots)

Next, I use R’s ggplot2 and gridExtra libraries to plot the students’ scores with regard to their parents’ levels of education, and the students’ scores with regard to whether they took a test prep course. You’ll need to run install.packages(“ggplot2”, “gridExtra”) in RStudio to install these packages first.

接下来,我使用R的ggplot2和gridExtra库来绘制学生对他们父母的教育水平的评分,以及学生对他们是否参加考试预备课程的评分。 您需要在RStudio中运行install.packages(“ ggplot2”,“ gridExtra”)才能首先安装这些软件包。

Image for post
Image for post

获取标准偏差和总体平均值 (Get Standard Deviations and Overall Averages)

Next, I use Deephaven’s filtering and aggregation tools to calculate the overall standard deviations and average scores for each subject, and store the results in constants. I do this because the standard deviations above average are actually more important information than just raw values, because knowing the standard deviation gives you a better idea of the magnitude of the impact of each variable.

接下来,我使用Deephaven的过滤和汇总工具来计算每个主题的总体标准偏差和平均分数,并将结果存储在常量中。 我这样做是因为高于平均值的标准偏差实际上比原始值更重要,因为知道标准偏差可以使您更好地了解每个变量的影响幅度。

将高于总体平均值的标准偏差添加到数据表中 (Add Standard Deviations Above Overall Average to the Data Table)

Lastly, I use Deephaven’s table updating functions to add the number of standard deviations each student’s score was above the overall average for each subject to the data table.

最后,我使用Deephaven的表格更新功能将每个学生的分数的标准差加到数据表中每个学科的总体平均水平之上。

Image for post

最终情节 (Final Plots)

Finally, I add the standard deviations above average to both plots.

最后,我将高于平均值的标准偏差添加到两个图中。

Image for post
Image for post

结论 (Conclusion)

As expected, a higher parental level of education correlated with higher scores in every subject, and generally resulted in less varying distributions. Students with a master’s degree parental education level in particular had top-heavy score distributions in math and writing.

不出所料,父母的受教育程度越高,每门科目的得分越高,通常分配的差异就越小。 尤其是具有父母教育程度的硕士学位的学生在数学和写作方面的成绩分配最高。

Also unsurprisingly, whether the student took a test prep course had a larger impact on the scores in each subject. The students who took a test prep course had more top-heavy scores in every subject than those who didn’t, especially writing. Surprisingly, the math scores were the least impacted by test prep courses. Neither variable had a large influence on the scores, though, as the scores were only impacted by <1 standard deviation. However, because this data is simulated, we must take the results with a grain of salt.

同样也就不足为奇的是,学生是否参加了考试预备课程对每个科目的成绩都有较大的影响。 参加考试预备课程的学生与没有考试的学生相比,在各个学科上的成绩最高,尤其是写作。 令人惊讶的是,数学分数受考试准备课程的影响最小。 但是,这两个变量都不会对分数产生很大影响,因为分数仅受<1个标准偏差的影响。 但是,由于此数据是模拟的,因此必须对结果进行细微的估计。

If you’re interested, you can read my full code below. If you want to see the html file, you can run the code in RStudio.

如果您有兴趣,可以在下面阅读我的完整代码。 如果要查看html文件,可以在RStudio中运行代码。

翻译自: https://medium.com/swlh/is-that-test-prep-course-worth-it-a18011524394

软件测试框架课程考试

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/388002.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开博第一天

开博第一天 纪念一下 转载于:https://www.cnblogs.com/yang-9654/p/9959388.html

GitLab 11.9 正式发布,自动化工具 ChatOps 已开源

GitLab 11.9 已正式发布&#xff0c;该版本新增了两个和安全相关的特性&#xff0c;一是快速检查私密信息是否泄漏&#xff0c;从该版本起在 CI/CD 过程中会扫描开发者提交的信息是否包含私密内容&#xff0c;有的话会在合并 PR 时向开发者发送警报&#xff1b;二是改进了合并 …

DOCKER windows安装

DOCKER windows安装 DOCKER windows安装 1.下载程序包2. 设置环境变量3. 启动DOCKERT4. 分析start.sh5. 利用SSH工具管理6. 下载镜像 6.1 下载地址6.2 用FTP工具上传tar包6.3 安装6.4 查看镜像6.5 运行 windows必须是64位的 1.下载程序包 安装包 https://github.com/boot2doc…

为什么在Python代码中需要装饰器

Python is praised for its clarity and syntactic sugariness. In this article, I will teach you to use decorators in Python to make your code readable and clean.Python的清晰性和语法含糖度受到赞誉。 在本文中&#xff0c;我将教您在Python中使用装饰器&#xff0c;…

Elasticsearch Reference [6.7] » Modules » Network Settings

2019独角兽企业重金招聘Python工程师标准>>> Search Settings Node Network Settingsedit Elasticsearch binds to localhost only by default. This is sufficient for you to run a local development server (or even a development cluster, if you star…

【百度】大型网站的HTTPS实践(一)——HTTPS协议和原理

大型网站的HTTPS实践&#xff08;一&#xff09;——HTTPS协议和原理 原创 网络通信/物联网 作者&#xff1a;AIOps智能运维 时间&#xff1a;2018-11-09 15:07:39 349 0前言 百度于2015年上线了全站HTTPS的安全搜索&#xff0c;默认会将HTTP请求跳转成HTTPS。从今天开始&…

数据清理最终实现了自动化

苹果 | GOOGLE | 现货 | 其他 (APPLE | GOOGLE | SPOTIFY | OTHERS) Editor’s note: The Towards Data Science podcast’s “Climbing the Data Science Ladder” series is hosted by Jeremie Harris. Jeremie helps run a data science mentorship startup called Sharpest…

mui 与jquery 同时使用,$冲突解决办法。

(function($,doc,$$) { 。。。。。 }(mui, document, jQuery)); 使用$$代替jQuery。 var $$jQuery.noConflict();此方法也可以 转载于:https://www.cnblogs.com/mustanglqt/p/10608499.html

LVS原理介绍及安装过程

一、ARP技术概念介绍 为什么讲ARP技术&#xff0c;因为平常工作中有接触。还有就是LVS的dr模式是用到arp的技术和数据。 1、什么是ARP协议 ARP协议全程地址解析协议&#xff08;AddressResolution Protocol&#xff0c;ARP&#xff09;是在仅知道主机的IP地址时确定其物理地…

Python气流介绍

This is a memo to share what I have learnt in Apache Airflow, capturing the learning objectives as well as my personal notes. The course is taught by Mike Metzger from DataCamp.这是一份备忘录&#xff0c;旨在分享我在Apache Airflow中学到的知识&#xff0c;记录…

java~springcloud微服务目录索引

回到占占推荐博客索引 最近写了不过关于java&#xff0c;spring&#xff0c;微服务的相关文章&#xff0c;今天把它整理一下&#xff0c;方便大家学习与参考。 java~springcloud微服务~目录索引 springcloud~服务注册与发现Eureka的使用 springcloud~配置中心的使用 springclou…

DNS Bind9在windows7下

有些公司技术力量薄弱一些&#xff0c;一直在用windows系统&#xff0c;所以本文从windows出发&#xff0c;安装bind&#xff0c;利用它的view功能&#xff0c;做智能DNS&#xff0c;解决双线机房南北电信联通访问问题前言&#xff1a; 搞LINUX的朋友都知道&#xff0c;bind是l…

正确的词典访问方式

unity3d 词典访问Python字典指南 (Python Dictionary Guide) The dictionary is one of the data structures that are ready to use when programming in Python.字典是使用Python进行编程时可以使用的数据结构之一。 在我们开始之前&#xff0c;什么是字典&#xff1f; (Bef…

Vue.js(5)- 全局组件

全局组件 定义组件的语法 Vue.component(组件的名称, { 组件的配置对象 }) 在组件的配置对象中&#xff1a;可以使用 template 属性指定当前组件要渲染的模板结构&#xff1b; 使用组件的语法 把 组件的名称, 以标签的形式&#xff0c;引入到页面上就行&#xff1b; // 导入v…

DNS的几个基本概念:

一&#xff0e; 根域 就是所谓的“.”&#xff0c;其实我们的网址www.baidu.com在配置当中应该是www.baidu.com.&#xff08;最后有一点&#xff09;&#xff0c;一般我们在浏览器里输入时会省略后面的点&#xff0c;而这也已经成为了习惯。 根域服务器我们知道有13台&#xff…

废水处理计算书 excel_废水监测数据是匿名的吗?

废水处理计算书 excelOur collective flushes help track and respond to Covid-19 and so much more. Your body waste contains harvestable compounds that can reveal your illnesses and diseases, consumption habits, and cosmetic use. Researchers gain insights from…

文件在线预览 图片 PDF Excel Word

1、前端实现pdf文件在线预览功能 方式一、pdf文件理论上可以在浏览器直接打开预览但是需要打开新页面。在仅仅是预览pdf文件且UI要求不高的情况下可以直接通过a标签href属性实现预览 <a href"文档地址"></a> 2、word、xls、ppt文件在线预览功能 word、pp…

数据科学还是计算机科学_您应该拥有数据科学博客的3个原因

数据科学还是计算机科学“Start a Blog to cement the things you learn. When you teach what you’ve learned in the form of a blog you can see the gaps in your knowledge and fill them in” — My Manager (2019)“创建一个博客以巩固您所学到的东西。 当您以博客的形…

D3.js 加标签

条形图还可以配上实际的数值,我们通过文本元素添加数据值。 svg.selectAll("text").data(dataset).enter().append("text").text(function(d){return d;}) 通过 x 和 y 值来定位文本元素。 .attr("text-anchor", "middle").attr("…

oppo5.0以上机器(亲测有效)激活Xposed框架的教程

对于喜欢玩手机的朋友而言&#xff0c;常常会用到xposed框架以及种类繁多功能强大的模块&#xff0c;对于5.0以下的系统版本&#xff0c;只要手机能获得ROOT权限&#xff0c;安装和激活xposed框架是异常简便的&#xff0c;但随着系统版本的迭代&#xff0c;5.0以后的系统&#…