配置
1、在conf目录下创建一个配置文件zoo.cfg
tickTime=2000
dataDir=.../zookeeper/data
dataLogDir=.../zookeeper/dataLog
clientPort=2181
initLimit=5
syncLimit=2
server.1=server1:2888:3888
server.2=server2:2888:3888
server.3=server3:2888:3888
•tickTime:发送心跳的间隔时间,单位:毫秒
•dataDir:zookeeper保存数据的目录。
•clientPort:客户端连接 Zookeeper 服务器的端口,Zookeeper 会监听这个端口,接受客户端的访问请求。
•initLimit: 这个配置项是用来配置 Zookeeper 的Leader接受Follower 服务器初始化连接时最长能忍受多少个心跳时间间隔数。当已经超过 5 个心跳的时间(也就是 tickTime)长度后 Leader还没有收到Follower的返回信息,那么表明这个Follower连接失败。总的时间长度就是 5*2000=10 秒
•syncLimit:这个配置项标识 Leader 与 Follower 之间发送消息,请求和应答时间长度,最长不能超过多少个 tickTime 的时间长度,总的时间长度就是 2*2000=4 秒
•server.A=B:C:D:其 中 A 是一个数字,表示这个是第几号服务器;B 是这个服务器的 ip地址;C 表示的是这个服务器与集群中的 Leader 服务器交换信息的端口;D 表示的是万一集群中的 Leader 服务器挂了,需要一个端口来重新进行选举,选出一个新的 Leader,而这个端口就是用来执行选举时服务器相互通信的端口。如果是伪集群的配置方式,由于 B 都是一样,所以不同的 Zookeeper 实例通信端口号不能一样,所以要给它们分配不同的端口号。
2、在dataLogDir下创建myid文件。
server1机器的内容为1,server2机器的内容为2,server3的内容为3
常用命令:
zkServer.sh start
zkServer.sh status
zkCli.sh
zk命令行中:
ls
create path data 如create /welcome hello,world
get path 如get /welcome
set path data 如set /welcome hi
ZooKeeper的角色
领导者(leader),负责进行投票的发起和决议,更新系统状态
学习者(learner),包括跟随者(follower)和观察者(observer)
follower用于接受客户端请求并向客户端返回结果,在选主过程中参与投票
observer可以接受客户端连接,将写请求转发给leader,但observer不参加投票过程,只同步leader的状态observer的目的是为了扩展系统,提高读取速度
客户端(client),请求发起方
Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。
Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。
当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。
为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。
每个Server在工作过程中有三种状态:
•LOOKING:当前Server不知道leader是谁,正在搜寻
•LEADING:当前Server即为选举出来的leader
•FOLLOWING:leader已经选举出来,当前Server与之同步
ZooKeeper的读写机制
» Zookeeper是一个由多个server组成的集群
» 一个leader,多个follower
» 每个server保存一份数据副本
» 全局数据一致
» 分布式读写
» 更新请求转发,由leader实施
» 更新请求顺序进行,来自同一个client的更新请求按其发送顺序依次执行
» 数据更新原子性,一次数据更新要么成功,要么失败
» 全局唯一数据视图,client无论连接到哪个server,数据视图都是一致的
» 实时性,在一定时间范围内,client能读到最新数据
Follower主要有四个功能:
1. 向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息);2 .接收Leader消息并进行处理;
3 .接收Client的请求,如果为写请求,发送给Leader进行投票;
4 .返回Client结果。
Follower的消息循环处理如下几种来自Leader的消息:
1 .PING消息: 心跳消息;
2 .PROPOSAL消息:Leader发起的提案,要求Follower投票;
3 .COMMIT消息:服务器端最新一次提案的信息;
4 .UPTODATE消息:表明同步完成;
5 .REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的session还是允许其接受消息;
6 .SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新。
Leader选举
奇数n的容错性与偶数n+1的容错性相同,所以没有必要用偶数。
•A提案说,我要选自己,B你同意吗?C你同意吗?B说,我同意选A;C说,我同意选A。(注意,这里超过半数了,其实在现实世界选举已经成功了。但是计算机世界是很严格,另外要理解算法,要继续模拟下去。)
•接着B提案说,我要选自己,A你同意吗;A说,我已经超半数同意当选,你的提案无效;C说,A已经超半数同意当选,B提案无效。
•接着C提案说,我要选自己,A你同意吗;A说,我已经超半数同意当选,你的提案无效;B说,A已经超半数同意当选,C的提案无效。
•选举已经产生了Leader,后面的都是follower,只能服从Leader的命令。
小细节,就是谁先启动谁当Leader。
zxid
• znode节点的状态信息中包含czxid, 那么什么是zxid呢?• ZooKeeper状态的每一次改变, 都对应着一个递增的Transaction id, 该id称为zxid. 由于zxid的递增性质, 如果zxid1小于zxid2, 那么zxid1肯定先于zxid2发生. 创建任意节点, 或者更新任意节点的数据, 或者删除任意节点, 都会导致
Zookeeper状态发生改变, 从而导致zxid的值增加.
Zookeeper的核心是原子广播,这个机制保证了各个server之间的同步。
实现这个机制的协议叫做Zab协议。
Zab协议有两种模式,它们分别是恢复模式和广播模式。
当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数server的完成了和leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和server具有相同的系统状态。
一旦leader已经和多数的follower进行了状态同步后,他就可以开始广播消息了,即进入广播状态。
这时候当一个server加入zookeeper服务中,它会在恢复模式下启动,发现leader,并和leader进行状态同步。
待到同步结束,它也参与消息广播。
Zookeeper服务一直维持在Broadcast状态,直到leader崩溃了或者leader失去了大部分的followers支持。
广播模式需要保证proposal被按顺序处理,因此zk采用了递增的事务id号(zxid)来保证。
所有的提议(proposal)都在被提出的时候加上了zxid。
实现中zxid是一个64为的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它
都会有一个新的epoch。低32位是个递增计数。
当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的server都恢复到一个正确的状态。
Leader选举:
» 每个Server启动以后都询问其它的Server它要投票给谁。
» 对于其他server的询问,server每次根据自己的状态都回复自己推荐的leader的id和上一次处理事务的zxid(系统启动时每个server都会推荐自己)
» 收到所有Server回复以后,就计算出zxid最大的哪个Server,并将这个Server相关信息设置成下一次要投票的Server。
» 计算这过程中获得票数最多的的sever为获胜者,如果获胜者的票数超过半数,则改server被选为leader。否则,继续这个过程,直到leader被选举出来。
» leader就会开始等待server连接
» Follower连接leader,将最大的zxid发送给leader
» Leader根据follower的zxid确定同步点
» 完成同步后通知follower 已经成为uptodate状态
» Follower收到uptodate消息后,又可以重新接受client的请求进行服务了
Observer
• Zookeeper需保证高可用和强一致性;
• 为了支持更多的客户端,需要增加更多Server;
• Server增多,投票阶段延迟增大,影响性能;
• 权衡伸缩性和高吞吐率,引入Observer
• Observer不参与投票;
• Observers接受客户端的连接,并将写请求转发给leader节点;
• 加入更多Observer节点,提高伸缩性,同时不影响吞吐率
为什么zookeeper集群的数目,一般为奇数个?
Leader选举算法采用了Paxos协议;Paxos核心思想:当多数Server写成功,则任务数据写成功。如果有3个Server,则两个写成功即可;
如果有4或5个Server,则三个写成功即可。
Server数目一般为奇数(3、5、7)
如果有3个Server,则最多允许1个Server挂掉;
如果有4个Server,则同样最多允许1个Server挂掉;
由此,我们看出3台服务器和4台服务器的的容灾能力是一样的,所以为了节省服务器资源,一般我们采用奇数个数,作为服务器部署个数。