计算机竞赛 python+opencv+深度学习实现二维码识别

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 python+opencv+深度学习实现二维码识别

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 二维码基础概念

2.1 二维码介绍

二维条码/二维码(2-dimensional bar
code)是用某种特定的几何图形按一定规律在平面(二维方向上)分布的、黑白相间的、记录数据符号信息的图形;在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理:它具有条码技术的一些共性:每种码制有其特定的字符集;每个字符占有一定的宽度;具有一定的校验功能等。同时还具有对不同行的信息自动识别功能、及处理图形旋转变化点。

2.2 QRCode

常见的二维码为QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,它比传统的Bar
Code条形码能存更多的信息,也能表示更多的数据类型。

2.3 QRCode 特点

1、符号规格从版本1(21×21模块)到版本40(177×177 模块),每提高一个版本,每边增加4个模块。

2、数据类型与容量(参照最大规格符号版本40-L级):

  • 数字数据:7,089个字符
  • 字母数据: 4,296个字符
  • 8位字节数据: 2,953个字符
  • 汉字数据:1,817个字符

3、数据表示方法:

  • 深色模块表示二进制"1",浅色模块表示二进制"0"。

4、纠错能力:

  • L级:约可纠错7%的数据码字
  • M级:约可纠错15%的数据码字
  • Q级:约可纠错25%的数据码字
  • H级:约可纠错30%的数据码字

5、结构链接(可选)

  • 可用1-16个QR Code码符号表示一组信息。每一符号表示100个字符的信息。

3 机器视觉二维码识别技术

3.1 二维码的识别流程

在这里插入图片描述

首先, 对采集的彩色图像进行灰度化, 以提高后继的运行速度。

其次, 去除噪声。 采用十字形中值滤波去除噪音对二码图像的干扰主要是盐粒噪声。

利用灰度直方图工具, 使用迭代法选取适当的阈值, 对二维码进行二值化处理,灰度化 去噪 二值化 寻找探测图形确定旋转角度 定位 旋转
获得数据使其变为白底黑色条码。

最后, 确定二维码的位置探测图形, 对条码进行定位, 旋转至水平后, 获得条码数据,
以便下一步进行解码。

3.2 二维码定位

QR 码有三个形状相同的位置探测图形, 在没有旋转的情况下, 这三个位置探测图形分别位于 QR 码符号的左上角、 右上角和左下角。
三个位置探测图形共同组成图像图形。

在这里插入图片描述

每个位置探测图形可以看作是由 3 个重叠的同心的正方形组成, 它们分别为 7 7 个深色模块、 5 5 个浅模块和 3*3 个深色模块。
位置探测图形的模块宽度比为 1: 1:3: 1: 1。

在这里插入图片描述

这种 1: 1: 3: 1: 1 的宽度比例特征在图像的其他位置出现的可能性很小, 故可以将此作为位置探测图形的扫描特征。 基于此特征,
当一条直线上(称为扫描线) 被黑白相间地截为1: 1: 3:1: 1 时, 可以认为该直线穿过了位置探测图形。

另外, 该扫描特征不受图像倾斜的影响。 对比中的两个 QR 码符号可以发现, 无论 QR码符号是否倾斜, 都符合 1: 1: 3:1: 1 的扫描特征。

在这里插入图片描述

3.3 常用的扫描方法

  1. 在 X 方向进行依次扫描。

(1) 固定 Y 坐标的取值, 在 X 方向上画一条水平直线(称为扫描线) 进行扫描。 当扫描线被黑白相间地截为 1: 1: 3: 1: 1 时,
可以认为该直线穿过了位置探测图形。 在实际判定时, 比例系数允许 0. 5 的误差, 即比例系数为1 的, 允许范围为 0. 5~1. 5, 比例系数为 3
的, 允许范围为 2. 5~3. 5。

(2) 当寻找到有直线穿过位置探测图形时, 记录下位置探测图形的外边缘相遇的第一点和最后一点 A 和 B。 由 A、 B
两点为端点的线段称为扫描线段。将扫描线段保存下来。

在这里插入图片描述

用相同的方法, 完成图像中所有水平方向的扫描。

  1. 在 Y 方向, 使用相同的方法, 进行垂直扫描, 同样保存扫描得到的扫描线段。

扫描线段分类扫描步骤获得的扫描线段是没有经过分类的, 也就是对于特定的一条扫描线段, 无法获知其具体对应于三个位置探测图形中的哪一个。
在计算位置探测图形中心坐标之前, 要将所有的扫描线段按照位置进行归类。 一般采用距离邻域法进行扫描线段的分类。

距离邻域法的思想是: 给定一个距离阈值 dT, 当两条扫描线段的中点的距离小于 d T 时, 认为两条扫描线段在同一个邻域内, 将它们分为一类,
反之则归为不同的类别。

距离邻域法的具体步骤如下:
(1) 给定一个距离阈值 dT , d T要求满足以下条件: 位于同一个位置探测图形之中的任意两点之间的距离小于 dT ,
位于不同位置探测图形中的任意两点之间的距离大于 d T
(2) 新建一个类别, 将第 1 条扫描线段归入其中。
(3) 对于第 i 条扫描线段 l i (2≤i≤n), 做以下操作:

a) 求出 l i 的中点 C i 。

b) 分别计算C i与在已存在的每一个类别中的第一条扫描线段的中点的距离d,若 d<d T , 则直接将 l i 加入相应类别中。

c) 若无法找到 l i 可以加入的类别, 则新建一个类别, 将 l i 加入其中。

(4) 将所有类别按照包含扫描线段的数目进行从大到小排序, 保存前 3 个类别(即
包含扫描线段数目最多的 3 个类别), 其余的视为误判得到的扫描线段(在位置探测图形以外的位置得到的符合扫描特征的扫描线段),
直接舍去。距离邻域法结束后得到的分好 3 个类别的扫描线段就分别对应了 3 个位置探测图形。距离邻域法的关键就是距离阈值的选取。 一般对于不同大小的 QR
码图像, 要使用不同的距离阈值。

(1) 在 X 方向的扫描线段中找出最外侧的两条, 分别取中点, 记为 A、 B。 由 A、 B两点连一条直线。
在这里插入图片描述

(2) 在 Y 方向的扫描线段中找出最外侧的两条, 分别取中点, 记为 C、 D。 由 C、 D两点连一条直线。
在这里插入图片描述

(3) 计算直线 AB 与直线 CD 的交点 O, 即为位置探测图形中心点。

在这里插入图片描述

将 QR 码符号的左上、 右上位置探测图形的中心分别记为 A、 B。 连接 A、 B。 直线 AB 与水平线的夹角α 即为 QR 码符号的旋转角度。

在这里插入图片描述
对于该旋转角度α , 求出其正弦值 sinα 与余弦值 cosα 即可。 具体计算公式如下:
在这里插入图片描述

在这里插入图片描述

位置探测图形边长的计算是基于无旋转图像的, 在无旋转图像中, 水平扫描线段的长度即为位置探测图形的边长。

水平扫描线段 AB 的长度即为位置探测图形的边长 X。

在这里插入图片描述

对于经过旋转的 QR 码图像, 先通过插值算法生成旋正的 QR 码图像, 然后按照如上所述的方法进

4 深度学习二维码识别

基于 CNN 的二维码检测,网络结构如下

在这里插入图片描述

4.1 部分关键代码

篇幅有限,学长在这只给出部分关键代码

首先,定义一个 AlgoQrCode.h

    #pragma once#include #include 
​    using namespace cv;
​    using namespace std;class AlgoQRCode{private:Ptr<wechat_qrcode::WeChatQRCode> detector;public:bool initModel(string modelPath);string detectQRCode(string strPath);bool compression(string inputFileName, string outputFileName, int quality);void release();};

该头文件定义了一些方法,包含了加载模型、识别二维码、释放资源等方法,以及一个 detector 对象用于识别二维码。

然后编写对应的源文件 AlgoQrCode.cpp

bool AlgoQRCode::initModel(string modelPath) {
​    	string detect_prototxt = modelPath + "detect.prototxt";
​    	string detect_caffe_model = modelPath + "detect.caffemodel";
​    	string sr_prototxt = modelPath + "sr.prototxt";
​    	string sr_caffe_model = modelPath + "sr.caffemodel";try{
​    		detector = makePtr<wechat_qrcode::WeChatQRCode>(detect_prototxt, detect_caffe_model, sr_prototxt, sr_caffe_model);}
​    	catch (const std::exception& e){
​    		cout << e.what() << endl;return false;}return true;}string AlgoQRCode::detectQRCode(string strPath){if (detector == NULL) {return "-1";}vector<Mat> vPoints;vector<cv::String> vStrDecoded;Mat imgInput = imread(strPath, IMREAD_GRAYSCALE);//	vStrDecoded = detector->detectAndDecode(imgInput, vPoints);....}bool AlgoQRCode::compression(string inputFileName, string outputFileName, int quality) {Mat srcImage = imread(inputFileName);if (srcImage.data != NULL){vector<int>compression_params;compression_params.push_back(IMWRITE_JPEG_QUALITY);compression_params.push_back(quality);     //图像压缩参数,该参数取值范围为0-100,数值越高,图像质量越高bool bRet = imwrite(outputFileName, srcImage, compression_params);return bRet;}return false;}void AlgoQRCode::release() {detector = NULL;}

5 测试结果

学长这里放到树莓派中,调用外部摄像头进行识别,可以看到,效果还是非常不错的

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/38687.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HotSpot虚拟机之字节码执行引擎

目录 一、栈帧 1. 栈帧结构 2. 基于栈的解释执行过程 二、方法调用 1. 方法调用指令 2. 分派 三、动态类型语言 四、参考资料 一、栈帧 1. 栈帧结构 栈帧是Java虚拟机栈进行方法调用和执行的数据结构&#xff0c;是方法最基本的执行单元&#xff0c;是栈的元素。一个栈…

【环境配置】Windows10终端和VSCode下能够直接打开Anaconda-Prompt

很多小伙伴在 Windows 下做深度学习开发的时候&#xff0c;遇到终端没有在 Linux 那么方便&#xff0c;那么我们现在就可以来设置一下&#xff1b;这样我们也可以在文件夹内部右键打开终端&#xff0c;也可以在 VS Code 里面新建一个虚拟环境的控制台&#xff1b;这里主要是针对…

佛祖保佑,永不宕机,永无bug

当我们的程序编译通过&#xff0c;能预防的bug也都预防了&#xff0c;其它的就只能交给天意了。当然请求佛祖的保佑也是必不可少的。 下面是一些常用的保佑图&#xff1a; 佛祖保佑图 ——————————————————————————————————————————…

【c语言】动态内存管理(超详细)

他治愈了身边所有人&#xff0c;唯独没有治愈他自己—超脱 csdn上的朋友你们好呀&#xff01;&#xff01;今天给大家分享的是动态内存管理 &#x1f440;为什么存在动态内存分配 我们定义的局部变量在栈区创建 int n 4;//在栈上开辟4个字节大小int arr[10] { 0 };//在栈上开…

Android Socket使用TCP协议实现手机投屏

本节主要通过实战来了解Socket在TCP/IP协议中充当的是一个什么角色&#xff0c;有什么作用。通过Socket使用TCP协议实现局域网内手机A充当服务端&#xff0c;手机B充当客户端&#xff0c;手机B连接手机A&#xff0c;手机A获取屏幕数据转化为Bitmap&#xff0c;通过Socket传递个…

Excel设置某列或者某行不某行不可以编辑,只读属性

设置单元格只读的三种方式: 1、通过单元格只读按钮&#xff0c;设置为只为 设置行或者列的只读属性&#xff0c;可以设置整行或者整列只读 2、设置单元格编辑控件为标签控件(标签控件不可编辑) 3、通过锁定行&#xff0c;锁定行的修改。锁定的行与只读行的区别在于锁定的行不…

openGauss学习笔记-40 openGauss 高级数据管理-锁

文章目录 openGauss学习笔记-40 openGauss 高级数据管理-锁40.1 语法格式40.2 参数说明40.3 示例 openGauss学习笔记-40 openGauss 高级数据管理-锁 如果需要保持数据库数据的一致性&#xff0c;可以使用LOCK TABLE来阻止其他用户修改表。 例如&#xff0c;一个应用需要保证表…

GPT垂直领域相关模型 现有的开源领域大模型

对于ToC端来说&#xff0c;广大群众的口味已经被ChatGPT给养叼了&#xff0c;市场基本上被ChatGPT吃的干干净净。虽然国内大厂在紧追不舍&#xff0c;但目前绝大多数都还在实行内测机制&#xff0c;大概率是不会广泛开放的&#xff08;毕竟&#xff0c;各大厂还是主盯ToB、ToG市…

视频集中存储安防监控平台EasyCVR优化AI硬件接入时的通道显示异常问题

安防视频监控平台视频集中存储EasyCVR可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。 安防监控视频云存储平台EasyCVR既具…

使用Logstash将数据从MySQL同步至Elasticsearch(有坑)

文章目录 一、准备工作1、安装elasticSearchkibana2、安装MySQL3、安装Logstash 二、全量同步1、准备MySQL数据与表2、上传mysql-connector-java.jar3、启动Logstash4、修改logstash.conf文件5、修改full_jdbc.sql文件6、打开Kibana创建索引和映射7、重启logstash进行全量同步8…

TCP/IP协议追层分析物理层(第三十九课)

TCP/IP协议追层分析物理层(第三十九课) 1 物理层:建立、维护、断开物理连接,定义了接口及介质,实现了比特流的传输。 1、传输介质分类 有线介质:网线(双绞线)、光纤 无线介质:无线电 微波 激光 红外线 2、双绞线分类: 五类cat5: 适用于100Mbps 超五类cat5e:适用于…

Qt扫盲- Graphics View框架理论综述

Graphics View框架理论综述 一、概述二、Graphics View 体系结构1. The Scene2. The View3. 图元 Item 三、图形视图坐标系统1. 图元Item的坐标2. Scene Scene坐标3. View 视图坐标4. 坐标映射 四、关键特性1. 缩放和旋转2. 打印3. 拖放4. 鼠标指针和 提示5. 动画6. OpenGL渲染…

【100天精通python】Day35:一文掌握GUI界面编程基本操作

目录 专栏导读 1 GUI 编程概述 1.1 为什么需要GUI&#xff1f; 1.2 常见的GUI编程工具和库 1.3 GUI应用程序的组成和架构 2 使用Tkinter 库 进行GUI编程 2.1 使用Tkinter库进行GUI编程的基本流程 2.2 使用Tkinter库进行GUI编程 2.2.1 导入Tkinter库 2.2.2 添加标签和…

绘制世界地图or中国地图

写在前面 在8月初,自己需要使用中国地图的图形,自己就此也查询相关的教程,自己也做一下小小总结,希望对自己和同学们有所帮助。 最终图形 这个系列从2022年开始,一直更新使用R语言分析数据及绘制精美图形。小杜的生信笔记主要分享小杜学习日常!如果,你对此感兴趣可以加…

MySQL存储结构及索引

文章目录 MySQL结构1.2存储引擎介绍1.3存储引擎特点InnoDB逻辑存储结构 MyISAMMemory区别及特点存储引擎选择 索引索引概述索引结构BTreeHash索引分类聚集索引&二级索引索引语法SQL性能分析索引优化最左前缀法则范围查询字符串不加引号模糊查询or连接条件数据分布影响覆盖索…

达梦数据库dbms_stats包的操作实践记录

索引的统计信息收集 GATHER_INDEX_STATSindex_stats_show 根据模式名&#xff0c;索引名获得该索引的统计信息。用于经过 GATHER_TABLE_STATS、GATHER_INDEX_STATS 或 GATHER_SCHEMA_STATS 收集之后展示。返回两个结果集&#xff1a;一个是索引的统计信息&#xff1b;另一个是…

Kotlin优点及为什么使用Kotlin

文章目录 一 Hello Kotlin二 Kotlin优点三 团队为什么采用 Kotlin 一 Hello Kotlin Kotlin和Andriod 二 Kotlin优点 三 团队为什么采用 Kotlin

Mendix 基础审计模块介绍

一、前言 作为售前顾问&#xff0c;帮助客户选型低代码产品是日常工作。考察一家低代码产品的好坏&#xff0c;其中一个维度就是产品的成熟度。产品成熟度直接影响产品在使用中的稳定性和用户体验&#xff0c;对于新工具导入和可持续运用至关重要。 那怎么考察一个产品是否成…

【校招VIP】java语言考点之ConcurrentHashMap1.7和1.8

考点介绍&#xff1a; ConcurrentHashMap是JAVA校招面试的热门考点&#xff0c;主要集中在1.7和1.8的底层结构和相关的性能提高。 理解这个考点要从map本身的并发问题出发&#xff0c;再到hashTable的低性能并发安全&#xff0c;引申到ConcurrentHashMap的分块处理。同时要理解…

【C++】做一个飞机空战小游戏(八)——生成敌方炮弹(rand()和srand()函数应用)

[导读]本系列博文内容链接如下&#xff1a; 【C】做一个飞机空战小游戏(一)——使用getch()函数获得键盘码值 【C】做一个飞机空战小游戏(二)——利用getch()函数实现键盘控制单个字符移动【C】做一个飞机空战小游戏(三)——getch()函数控制任意造型飞机图标移动 【C】做一个飞…