前言碎语
当系统流量负载比较高时,业务日志的写入操作也要纳入系统性能考量之内,如若处理不当,将影响系统的正常业务操作,之前写过一篇《spring boot通过MQ消费log4j2的日志》的博文,采用了RabbitMQ消息中间件来存储抗高并发下的日志,因为引入了中间件,操作使用起来可能没那么简便,今天分享使用多线程消费阻塞队列的方式来处理我们的海量日志
waht阻塞队列?
阻塞队列(BlockingQueue)是区别于普通队列多了两个附加操作的线程安全的队列。这两个附加的操作是:在队列为空时,获取元素的线程会等待队列变为非空。当队列满时,存储元素的线程会等待队列可用。阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。
1.声明存储固定消息的队列
/*** Created by kl on 2017/3/20.* Content :销售操作日志队列*/ public class SalesLogQueue{//队列大小public static final int QUEUE_MAX_SIZE = 1000;private static SalesLogQueue alarmMessageQueue = new SalesLogQueue();//阻塞队列private BlockingQueueblockingQueue = new LinkedBlockingQueue<>(QUEUE_MAX_SIZE);private SalesLogQueue(){}public static SalesLogQueue getInstance() {return alarmMessageQueue;}/*** 消息入队* @param salesLog* @return*/public boolean push(SalesLog salesLog) {return this.blockingQueue.add(salesLog);//队列满了就抛出异常,不阻塞}/*** 消息出队* @return*/public SalesLog poll() {SalesLog result = null;try {result = this.blockingQueue.take();} catch (InterruptedException e) {e.printStackTrace();}return result;}/*** 获取队列大小* @return*/public int size() {return this.blockingQueue.size();} }
ps:因为业务原因,采用add的方式入队,队列满了就抛异常,不阻塞
2.消息入队
消息入队可以在任何需要保存日志的地方操作,如aop统一拦截日志处理,filter过滤请求日志处理,或者耦合的业务日志,记住,不阻塞入队操作,不然将影响正常的业务操作,如下为filter统一处理请求日志:
/*** Created by kl on 2017/3/20.* Content :访问请求拦截,保存操作日志*/ public class SalesLogFilter implements Filter {private RoleResourceService resourceService;@Overridepublic void init(FilterConfig filterConfig) throws ServletException {ServletContext context = filterConfig.getServletContext();ApplicationContext ctx = WebApplicationContextUtils.getWebApplicationContext(context);resourceService = ctx.getBean(RoleResourceService.class);}@Overridepublic void doFilter(ServletRequest servletRequest, ServletResponse servletResponse, FilterChain filterChain) throws IOException, ServletException {try {HttpServletRequest request = (HttpServletRequest) servletRequest;String requestUrl = request.getRequestURI();String requestType=request.getMethod();String ipAddress = HttpClientUtil.getIpAddr(request);Map resource=resourceService.getResource();String context=resource.get(requestUrl);//动态url正则匹配if(StringUtil.isNull(context)){for(Map.Entry entry:resource.entrySet()){String resourceUrl= entry.getKey();if(requestUrl.matches(resourceUrl)){context=entry.getValue();break;}}}SalesLog log=new SalesLog();log.setCreateDate(new Timestamp(System.currentTimeMillis()));log.setContext(context);log.setOperateUser(UserTokenUtil.currentUser.get().get("realname"));log.setRequestIp(ipAddress);log.setRequestUrl(requestUrl);log.setRequestType(requestType);SalesLogQueue.getInstance().push(log);}catch (Exception e){e.printStackTrace();}filterChain.doFilter(servletRequest, servletResponse);}@Overridepublic void destroy() {} }
3.消息出队被消费
BlockingQueue是线程安全的,所以可以放心的在多个线程中去处理队列中的消息,如下代码声明了一个两个大小的固定线程池,并添加了两个线程去处理队列中的消息
/*** Created by kl on 2017/3/20.* Content :启动消费操作日志队列的线程*/ @Component public class ConsumeSalesLogQueue {@AutowiredSalesLogService salesLogService;@PostConstructpublic void startrtThread() {ExecutorService e = Executors.newFixedThreadPool(2);//两个大小的固定线程池e.submit(new PollSalesLog(salesLogService));e.submit(new PollSalesLog(salesLogService));}class PollSalesLog implements Runnable {SalesLogService salesLogService;public PollSalesLog(SalesLogService salesLogService) {this.salesLogService = salesLogService;}@Overridepublic void run() {while (true) {try {SalesLog salesLog = SalesLogQueue.getInstance().poll();if(salesLog!=null){salesLogService.saveSalesLog(salesLog);}} catch (Exception e) {e.printStackTrace();}}}} }
参考博文如下,对BlockingQueue队列更多了解,可读一读如下的博文:
- http://blog.csdn.net/vernonzheng/article/details/8247564
- http://www.infoq.com/cn/articles/java-blocking-queue
- http://wsmajunfeng.iteye.com/blog/1629354