约瑟夫问题

n个人编号为0…n-1围成一个圈,从0开始报数,每经过k个人那个人就退出这个圈不再报数,问最后留下来的人的编号.

朴素的做法当然是模拟,但是n,k的值一旦变得比较大的时候就难以解决问题.

我们考虑归纳的解决问题
当只有一个人的时候答案显然为0,
假设我们已知n-1个人的时候答案为ans[n-1],那么当人数为n时
显然的,我们首先得选一个人出去,这个人是(k-1)%n,然后我们从下一个起点(k%n)开始算起,我们不难发现问题变成了n-1个人的问题,因此ans[n]=(ans[n-1]+k)%n

可是这样当n比较大的时候我们还是难以很快的解决问题.当n比较大的时候,前n/k次我们都是很容易确定的,因此我们直接考虑Josephus(n−n/k,k)Josephus(n-n/k,k)Josephus(nn/k,k),直到n-n/k小于k,这样就能很快将复杂度变成O(k)级别的.根据刚才的想法,Josephus(n,k)=Josephus(n−n/k,k)+n/k∗kJosephus(n,k)=Josephus(n-n/k,k)+n/k*kJosephus(n,k)=Josephus(nn/k,k)+n/kk就可以了吗?问题并不是这么简单.
我们看一个例子:
当n=10,k=4的时候我们选择两次以后的序列为
0 1 2 * 4 5 6 * 8 9
因此我们应该考虑n=8的情况
2 3 4 * 5 6 7 * 0 1
假设n=8时最后选出来的人为5,按照上面的式子原答案为(5+8)%10=3,但是正确的答案却应该是4,问题出在哪里呢?
原来我们选过以后的数列不是连续的了,必须考虑已经选过的没法再次选.我们观察,对于n=8时,越过n%k后每4-1个数出现一个已经选择后的情况,需要加1

所以我们分类讨论:
设s’=Josephus(n−n/k,k)Josephus(n-n/k,k)Josephus(nn/k,k)
当s’<n%k时,s=s’+n/k*k;
当s’>=n%k时,s=s’-n%k+(s’-n%k)/(k-1)

根据上面的讨论我们得到解决问题的算法:

int Josephus(int n,int k)
{if(n==1) return 0;int ret;if(n<k){ret=0;for(int i=2;i<=n;i++){ret=(ret+k)%i;}return ret;}ret=Josephus(n-n/k,k);if(ret<n%k){ret+=n/k*k;}else{ret-=n%k;ret+=ret/(k-1);}return ret;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/383911.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构与算法】内部排序之三:堆排序(含完整源码)

转载请注明出处&#xff1a;http://blog.csdn.net/ns_code/article/details/20227303 前言 堆排序、快速排序、归并排序&#xff08;下篇会写这两种排序算法&#xff09;的平均时间复杂度都为O&#xff08;n*logn&#xff09;。要弄清楚堆排序&#xff0c;就要先了解下二叉堆这…

模线性方程(中国剩余定理+扩展中国剩余定理)

已知一系列除数和模数,求最小的满足条件的数 我们先考虑一般的情况&#xff0c;即模数不互质。&#xff08;扩展中国剩余定理&#xff09; 我们考虑两个方程的情况 x%MR xk1∗MRxk1 * MRxk1∗MR x%mr xk2∗mrxk2 * mrxk2∗mr 所以k1∗MRk2∗mrk1 * MRk2 * mrk1∗MRk2∗mr 即…

C++:Vector和List的实现

Vector的实现 //test.h #pragma once#include <iostream> #include <cstdio> #include <string.h> #include <assert.h>using namespace std;typedef int DataType;#define TESTHEADER printf("\n%s\n", __FUNCTION__)class Vector { publi…

【数据结构】(面试题)使用两个栈实现一个队列(详细介绍)

http://blog.csdn.net/hanjing_1995/article/details/51539578 使用两个栈实现一个队列 思路一&#xff1a; 我们设定s1是入栈的&#xff0c;s2是出栈的。 入队列&#xff0c;直接压到s1即可 出队列&#xff0c;先把s1中的元素倒入到s2中&#xff0c;弹出s2中的栈顶元素&#x…

POJ 1006 Biorhythms

中国剩余定理的模板题 只是有一个问题就是求出来Xk*MR中的R比给定的日期还大&#xff0c;但是如果负数的整除就不是向下取整了&#xff0c;为了解决这个问题&#xff0c;我们将R减小M&#xff0c;这样总是正的&#xff0c;求出来的就没有什么问题。 #include <iostream>…

POJ 3696 欧拉函数+快速幂

题目的意思大概就是问是否存在一串全是8的数字是L的倍数 直接想没有什么想法&#xff0c;要想到用简洁的形式将这个数字表示出来&#xff0c;对于每一位都是8的数字我们可以用 X8*(10k-1)/9的形式表示出来&#xff0c;那么题目的意思就是求X使L|X&#xff0c;我们先处理一下8和…

两个栈实现一个队列,两个队列实现一个栈

http://blog.csdn.net/zw_1510/article/details/51927554 问题1&#xff1a;用两个栈实现一个队列&#xff0c;实现队列的push和delete操作 栈的特性是先进后出&#xff08;FILO&#xff09;,队列的特性是先进先出&#xff08;FIFO&#xff09;,在实现delete时&#xff0c;我们…

C++:String的写时拷贝

String的写时拷贝 //test.h #pragma once#include <iostream> #include <string.h> #include <cstdio> #include <assert.h> using namespace std;#define TESTHEADER printf("\n%s\n", __FUNCTION__) class String { public:String(const …

两个栈实现一个队列与两个队列实现一个栈

http://blog.csdn.net/z84616995z/article/details/19204529 两个栈实现一个队列&#xff1a; 原理方法&#xff1a;用一个栈为主栈&#xff0c;一个栈为辅助栈存放临时元素。 入队&#xff1a;将元素依次压入主栈 出队&#xff1a;先检测辅助栈是否为空&#xff0c;如果非空&a…

UVa11426——欧拉函数

发现对于gcd问题要多和欧拉函数联系在一起&#xff0c;虽然有时候并不是互质&#xff0c;但是我们知道有多少互质的然后根据互质的数目就能解决很多个gcd的问题 对于这道题目&#xff0c;题目要求的是所有数对的gcd的和&#xff0c;直接思考的话有难度。但是我们如果联想到欧拉…

C++:继承和多态

虚函数:只有类的成员函数才能定义为虚函数 虚函数 在类的成员函数前面加上一个 virtual 关键字, 此时这个成员函数就叫做虚函数 虚函数 当在子类中定义了一个与父类完全相同的虚函数的时候,此时就叫做子类的虚函数重写了父类的虚函数 构成多态的条件 派生类重写基类的虚函数…

POJ 1061扩展欧几里得

扩展欧几里得的模板题&#xff0c;需要注意的是为了得到一个最小正数解我们要使axbyc中的a,b都是正数 #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<iostream> #include<cmath> #include<ctim…

C++::探索对象模型

前面我们已经知道, 在没有虚函数的时候, 对象的大小就是对应的成员变量的大小, 而成员函数不会占用对象的空间, 今天我们来讨论一下, 当类中定义了虚函数的时候, 此时对象的大小以及对象模型 非继承下的对象模型 class Base { public:virtual void func1(){cout << &qu…

auto_ptr

#include <iostream> #include <memory> using namespace std;class A { public:A(){cout<<"构造"<<endl;}~A(){cout<<"A析构"<<endl;}void fun(){cout<<"A::fun"<<endl;} };class PA { public…

POJ 2142——扩展欧几里得

题目是很裸的扩展欧几里得&#xff0c;但是对x,y有限制条件&#xff0c;要求所有x,y中abs(x)abs(y)最小&#xff0c;在这个条件下要求abs(a* x)abs(b* y)最小 显然我们需要用扩展欧几里得求得一组解&#xff0c;问题在于如何处理这组解以得到符合条件的值。 我是这样处理的&a…

C++::模板

模板的简单介绍 C中模板是为了能够使得函数或者类实现范型编程的目的, 同时C模板的出现是为了避免代码的冗余 举个例子 void Swap(int& a, int& b) {int tmp a;b a;a b; } void Swap(char& a, char& b) {char tmp a;b a;a b; } 上面的函数除了类型不…

Linux select TCP并发服务器与客户端编程

http://blog.csdn.net/szkbsgy/article/details/10558881 [cpp] view plaincopy <span style"font-size:18px;">服务端&#xff1a; #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #i…

BZOJ - 2186 欧拉函数

题目的意思大概是求1~N!中和M&#xff01;互质的数的个数 因为对欧拉函数理解不够深刻所以我是分析得到结果的&#xff1a; 当N<M的时候显然符合要求的数的个数为0&#xff1b; 当N>M的时候我们要求的是1~N!中不含1 ~M的素因子的的数的个数&#xff0c;结合欧拉函数的…

多态相关概念

多态相关注意事项 所谓的多态就是指函数有多中状态, 在C中通常是通过父类指针指向子类对象的方法实现多态, 这样父类可以通过子类的类型调用不同的方法. 即实现一个接口多种方法, 多态的引用是为了实现接口复用 在 C中多态是通过虚函数来实现的. 子类通过对父类相关接口进行重…

模板实现栈队列以及链表

模板实现链表 //test.h #include <iostream> #include <cstdio> #include <assert.h> using namespace std;template <class T> struct ListNode {ListNode* _prev;ListNode* _next;T _data;ListNode(const T& x):_prev(NULL),_next(NULL),_data(…