http://blog.sina.com.cn/s/blog_53b7ddf00101p5t0.html
std::move是一个用于提示优化的函数,过去的c++98中,由于无法将作为右值的临时变量从左值当中区别出来,所以程序运行时有大量临时变量白白的创建后又立刻销毁,其中又尤其是返回字符串std::string的函数存在最大的浪费。
比如:
1 std::string fileContent = “oldContent”;
2 s = readFileContent(fileName);
因为并不是所有情况下,C++编译器都能进行返回值优化,所以,向上面的例子中,往往会创建多个字符串。readFileContent如果没有内部状态,那么,它的返回值多半是std::string(const std::string的做法不再被推荐了),而不是const std::string&。这是一个浪费,函数的返回值被拷贝到s中后,栈上的临时对象就被销毁了。
在C++11中,编码者可以主动提示编译器,readFileContent返回的对象是临时的,可以被挪作他用:std::move。
将上面的例子改成:
1 std::string fileContent = “oldContent”;
2 s = std::move(readFileContent(fileName));
后,对象s在被赋值的时候,方法std::string::operator =(std::string&&)会被调用,符号&&告诉std::string类的编写者,传入的参数是一个临时对象,可以挪用其数据,于是std::string::operator =(std::string&&)的实现代码中,会置空形参,同时将原本保存在中形参中的数据移动到自身。
不光是临时变量,只要是你认为不再需要的数据,都可以考虑用std::move移动。
比较有名的std::move用法是在swap中:
1 template
2 void swap(T& a, T& b)
3 {
4 T t(std::move(a)); // a为空,t占有a的初始数据
5 a = std::move(b); // b为空, a占有b的初始数据
6 b = std::move(t); // t为空,b占有a的初始数据
7 }
总之,std::move是为性能而生的,正式因为了有了这个主动报告废弃物的设施,所以C++11中的STL性能大幅提升,即使C++用户仍然按找旧有的方式来编码,仍然能因中新版STL等标准库的强化中收益。
std::forward是用于模板编程中的,如果不需要编写通用的模板类和函数,可能不怎么用的上它。
要认识它的作用,需要知道C++中的几条规则:(这里有篇挺好的文章:http://blog.csdn.net/zwvista/article/details/6848582,但似乎因标准的更新,其中的规则已不完全成立了)
1.
X& + & => X&
X&& + & => X&
X& + && => X&
X&& + && => X&&
2. 对于模板函数中的形参声明T&&(这里的模板参数T,最终推演的结果可能不是一个纯类型,它可能还会带有引用/常量修饰符,如,T推演为const int时,实际形参为const int &&),会有如下规则:
如果调用函数时的实参为U&(这里的U可能有const/volatile修饰,但没有左/右引用修饰了),那么T推演为U&,显然根据上面的引用折叠规则,U& &&=>U&。
如果调用实参为U&&,虽然将T推导为U&&和U都能满足折叠规则(U&& &&=> U&&且U &&=>U&&),但标准规定,这里选择将T推演为U而非U&&。
总结一下第2条规则:当形参声明为T&&时,对于实参U&,T被推演为U&;当实参是U&&时,T被推演为U。当然,T和U具有相同的const/volatile属性。
3.这点很重要,也是上面zwvista的文章中没有提到的:形参T&& t中的变量t,始终是左值引用,即使调用函数的实参是右值引用也不例外。可以这么理解,本来,左值和右值概念的本质区别就是,左值是用户显示声明或分配内存的变量,能够直接用变量名访问,而右值主要是临时变量。当一个临时变量传入形参为T&& t的模板函数时,T被推演为U,参数t所引用的临时变量因为开始能够被据名访问了,所以它变成了左值。这也就是std::forward存在的原因!当你以为实参是右值所以t也应该是右值时,它跟你开了个玩笑,它是左值!如果你要进一步调用的函数会根据左右值引用性来进行不同操作,那么你在将t传给其他函数时,应该先用std::forward恢复t的本来引用性,恢复的依据是模板参数T的推演结果。虽然t的右值引用行会退化,变成左值引用,但根据实参的左右引用性不同,T会被分别推演为U&和U,这就是依据!因此传给std::forward的两个参数一个都不能少:std::forward(t)。
再来,讨论一下,一个模板函数如果要保留参数的左右值引用性,为什么应该声明为T&&:
如果声明函数f(T t):实参会直接进行值传递,失去了引用性。
如果声明函数f(T &t): 根据引用折叠法则,无论T是U&还是U&&,T&的折叠结果都只会是U&,即,这个声明不能用于匹配右值引用实参。
如果声明函数f(T &&t): 如果T为U&,T&&的结果是U&,可以匹配左值实参;如果T为U&&,T&&的结果是U&&,可以匹配右值实参。又因为T的cv性和U相同,所以这种声明能够保留实参的类型信息。
先来看一组帮助类:
1 template struct TypeName { static const char *get(){ return "Type"; } };
2 template struct TypeName<<SPAN style="PADDING-BOTTOM: 0px; LINE-HEIGHT: 1.5; MARGIN: 0px; PADDING-LEFT: 0px; PADDING-RIGHT: 0px; FONT-FAMILY: 'Courier New'; COLOR: rgb(0,0,255); FONT-SIZE: 12px; PADDING-TOP: 0px">const T> { static const char *get(){ return "const Type"; } };
3 template struct TypeName { static const char *get(){ return "Type&"; } };
4 template struct TypeName<<SPAN style="PADDING-BOTTOM: 0px; LINE-HEIGHT: 1.5; MARGIN: 0px; PADDING-LEFT: 0px; PADDING-RIGHT: 0px; FONT-FAMILY: 'Courier New'; COLOR: rgb(0,0,255); FONT-SIZE: 12px; PADDING-TOP: 0px">const T&> { static const char *get(){ return "const Type&"; } };
5 template struct TypeName { static const char *get(){ return "Type&&"; } };
6 template struct TypeName<<SPAN style="PADDING-BOTTOM: 0px; LINE-HEIGHT: 1.5; MARGIN: 0px; PADDING-LEFT: 0px; PADDING-RIGHT: 0px; FONT-FAMILY: 'Courier New'; COLOR: rgb(0,0,255); FONT-SIZE: 12px; PADDING-TOP: 0px">const T&&> { static const char *get(){ return "const Type&&"; } };
在模板函数内部将模板参数T传给TypeName,就可以访问T的类型字符串:TypeName::get()。
再一个帮助函数,用于打印一个表达式的类型:
1 template
2 void printValType(T &&val)
3 {
4 cout << TypeName::get() << endl;
5 }
注意3条规则在这个模板函数上的应用。规则1,解释了T&& val的声明足以保留实参的类型信息。规则2,说明了,当实参是string&时,T就是string&;当实参是const string&&时,T就是const string(而非const string&&)。规则3,强调,无论实参是string&还是string&&,形参val的类型都是string&!
注意TypeName的写法,因为T只能为U&或者U,显然T&&可以根据折叠法则还原为实参类型U&和U&&。
这里是常见的const/左右引用组合的情形:
1 class A{}; // 测试类
2 A& lRefA() { static A a; return a;} // 左值
3 const A& clRefA() { static A a; return a;} // 常左值
4 A rRefA() { return A(); } // 右值
5 const A crRefA() { return A(); } // 常右值
测试一下上面的表达式类型:
1 printValType(lRefA());
2 printValType(clRefA());
3 printValType(rRefA());
4 printValType(crRefA());
输出依次是: Type&,const Type&,Type&&,const Type&&。
现在正式来探讨std::forward的实现。
回顾一下使用std::forward的原因:由于声明为f(T&& t)的模板函数的形参t会失去右值引用性质,所以在将t传给更深层函数前,可能会需要回复t的正确引用行,当然,修改t的引用性办不到,但根据t返回另一个引用还是可以的。恰好,上面的函数printValType是一个会根据实参类型不同,作出不同反映的函数,所以可以把它作为f的内层函数,来检测f有没有正确的修正t的引用行。
1 template
2 void f(T &&a)
3 {
4 printValType(a);
5 }
6
7 int main()
8 {
9 f(lRefA());
10 f(clRefA());
11 f(rRefA());
12 f(crRefA());
13 }
输出:Type&,const Type&,Type&,const Type&。
可见后两个输出错了,这正是前面规则3描述的,当实参是右值引用时,虽然T被推演为U,但是参数a退化成了左值引用。
直接应用std::forward:
1 template
2 void f(T &&a)
3 {
4 printValType(std::forward(a));
5 }
输出:Type&,const Type&,Type&&,const Type&&。
输出正确了,这就是std::forward的作用啊。如果更深层的函数也需要完整的引用信息,如这里的printValType,那就应该在传递形参前先std::forward!
在编写自己的forward函数之前,先来尝试直接强制转化参数a:
1 template
2 void f(T &&a)
3 {
4 printValType((T&&)a);
5 }
输出:Type&,const Type&,Type&&,const Type&&。
正确!因为不管T被推演为U&还是U,只要T&&肯定能还原为U&和U&&。
考虑下自己的forward函数应该怎么写:
1 template
2 T&& forward(... a)
3 {
4 return (T&&)a;
5 }
调用方f一定得显示指定类型forward。
形参怎么写?形参a的类型由T构成,而且forward的实参一定是左值(暂时不考虑forward(std::string())的使用方法),也就是说,无论T是U&还是U,形参a的类型一定都得是U&,才能和实参匹配,所以,结果是:
1 template
2 T&& forward(T& a)
3 {
4 return (T&&)a;
5 }
测试,输出:Type&,const Type&,Type&&,const Type&&。
正确!
再试下,如果f调用forward的时候,使用forward(a)的方式,没有显示指定模板类型会怎么样:
1 template
2 void f(T &&a)
3 {
4 printValType(forward(a));
5 }
输出:T&&,const Type&&,Type&&,const Type&&。
错了。分析下,因为实参始终是左值,所以forward的形参T& a中,T就被推演为U,因此(T&&)a也就是(U&&)a所以结果错误。
为了避免用户使用forward(a),因此应该禁用forward的自动模板参数推演功能!可以借助std::identity,另外,将(T&&)换成static_cast,规范一下:
1 template
2 T&& forward(typename std::identity::type& a)
3 {
4 return static_cast(a);
5 }
上面讲的是针对T为U&或U,而实参始终为左值的情况,这是常见的情形;不过也有实参为右值的情况,还需要改进上面这个forward,但我这里就不写了。
这是我手里的gcc4.5.2的forward实现:
1 /// forward (as per N2835)
2 /// Forward lvalues as rvalues.
3 template
4 inline typename enable_if::value, _Tp&&>::type
5 forward(typename std::identity<_Tp>::type& __t)
6 { return static_cast<_Tp&&>(__t); }
7
8 /// Forward rvalues as rvalues.
9 template
10 inline typename enable_if::value, _Tp&&>::type
11 forward(typename std::identity<_Tp>::type&& __t)
12 { return static_cast<_Tp&&>(__t); }
13
14 // Forward lvalues as lvalues.
15 template
16 inline typename enable_if::value, _Tp>::type
17 forward(typename std::identity<_Tp>::type __t)
18 { return __t; }
19
20 // Prevent forwarding rvalues as const lvalues.
21 template
22 inline typename enable_if::value, _Tp>::type
23 forward(typename std::remove_reference<_Tp>::type&& __t) = delete;
第1/3版本就相当于我之前的实现,而版本2/4是实参为右值的情况,至于后者这种取舍的原因,还得去自己研究下使用场合和文档了。
我手里的vc2010实现的forward和我之前的实现相同,显然还不够,不过vc2010本来对标准也就还支持得少..