Linux网络编程——I/O复用之poll函数

https://blog.csdn.net/lianghe_work/article/details/46534029

一、回顾前面的select

select优点:

目前几乎在所有的平台上支持,其良好跨平台支持也是它的一个优点

select缺点:

1.每次调用 select(),都需要把 fd 集合从用户态拷贝到内核态,这个开销在 fd 很多时会很大,同时每次调用 select() 都需要在内核遍历传递进来的所有 fd,这个开销在 fd 很多时也很大。

2.单个进程能够监视的文件描述符的数量存在最大限制,在 Linux 上一般为 1024,可以通过修改宏定义甚至重新编译内核的方式提升这一限制,但是这样也会造成效率的降低

二、poll函数概述

select() 和 poll() 系统调用的本质一样,poll() 的机制与 select() 类似,与 select() 在本质上没有多大差别,管理多个描述符也是进行轮询,根据描述符的状态进行处理,但是 poll() 没有最大文件描述符数量的限制(但是数量过大后性能也是会下降)。poll() 和 select() 同样存在一个缺点就是,包含大量文件描述符的数组被整体复制于用户态和内核的地址空间之间,而不论这些文件描述符是否就绪,它的开销随着文件描述符数量的增加而线性增大。

poll()函数介绍

头文件:
#include <poll.h>

函数体:
int poll(struct pollfd *fds, nfds_t nfds, int timeout);
功能:
监视并等待多个文件描述符的属性变化

参数:

fds:指向一个结构体数组的第0个元素的指针,每个数组元素都是一个struct pollfd结构,用于指定测试某个给定的fd的条件

  1. struct pollfd{
  2. int fd; //文件描述符
  3. short events; //等待的事件
  4. short revents; //实际发生的事件
  5. };

fd:每一个 pollfd 结构体指定了一个被监视的文件描述符,可以传递多个结构体,指示 poll() 监视多个文件描述符。

events:指定监测fd的事件(输入、输出、错误),每一个事件有多个取值,如下:



revents:revents 域是文件描述符的操作结果事件,内核在调用返回时设置这个域。events 域中请求的任何事件都可能在 revents 域中返回.


注意:每个结构体的 events 域是由用户来设置,告诉内核我们关注的是什么,而 revents 域是返回时内核设置的,以说明对该描述符发生了什么事件


nfds:用来指定第一个参数数组元素个数

timeout: 指定等待的毫秒数,无论 I/O 是否准备好,poll() 都会返回.



返回值:

成功时,poll() 返回结构体中 revents 域不为 0 的文件描述符个数;如果在超时前没有任何事件发生,poll()返回 0;


失败时,poll() 返回 -1,并设置 errno 为下列值之一:

EBADF:一个或多个结构体中指定的文件描述符无效。

EFAULT:fds 指针指向的地址超出进程的地址空间。

EINTR:请求的事件之前产生一个信号,调用可以重新发起。

EINVAL:nfds 参数超出 PLIMIT_NOFILE 值。

ENOMEM:可用内存不足,无法完成请求。


三、poll示例举例

用poll实现udp同时收发

代码:
  1. #include <string.h>
  2. #include <stdio.h>
  3. #include <stdlib.h>
  4. #include <unistd.h>
  5. #include <sys/select.h>
  6. #include <sys/time.h>
  7. #include <sys/socket.h>
  8. #include <netinet/in.h>
  9. #include <arpa/inet.h>
  10. #include <poll.h>
  11. int main(int argc,char *argv[])
  12. {
  13. int udpfd = 0;
  14. int ret = 0;
  15. struct pollfd fds[2];//监测文件描述结构体数组:2个
  16. struct sockaddr_in saddr;
  17. struct sockaddr_in caddr;
  18. bzero(&saddr,sizeof(saddr));
  19. saddr.sin_family = AF_INET;
  20. saddr.sin_port = htons(8000);
  21. saddr.sin_addr.s_addr = htonl(INADDR_ANY);
  22. bzero(&caddr,sizeof(caddr));
  23. caddr.sin_family = AF_INET;
  24. caddr.sin_port = htons(8000);
  25. //创建套接字
  26. if( (udpfd = socket(AF_INET,SOCK_DGRAM, 0)) < 0)
  27. {
  28. perror("socket error");
  29. exit(-1);
  30. }
  31. //套接字端口绑字
  32. if(bind(udpfd, (struct sockaddr*)&saddr, sizeof(saddr)) != 0)
  33. {
  34. perror("bind error");
  35. close(udpfd);
  36. exit(-1);
  37. }
  38. printf("input: \"sayto 192.168.220.X\" to sendmsg to somebody\033[32m\n");
  39. fds[0].fd = 0; //标准输入描述符
  40. fds[1].fd = udpfd; //udp描述符
  41. fds[0].events = POLLIN; // 普通或优先级带数据可读
  42. fds[1].events = POLLIN; // 普通或优先级带数据可读
  43. while(1)
  44. {
  45. // 监视并等待多个文件(标准输入,udp套接字)描述符的属性变化(是否可读)
  46. // 没有属性变化,这个函数会阻塞,直到有变化才往下执行,这里没有设置超时
  47. ret = poll(fds, 2, -1);
  48. write(1,"UdpQQ:",6);
  49. if(ret == -1){ // 出错
  50. perror("poll()");
  51. }
  52. else if(ret > 0){ // 准备就绪的文件描述符
  53. char buf[100] = {0};
  54. if( ( fds[0].revents & POLLIN ) == POLLIN ){ // 标准输入
  55. fgets(buf, sizeof(buf), stdin);
  56. buf[strlen(buf) - 1] = '\0';
  57. if(strncmp(buf, "sayto", 5) == 0)
  58. {
  59. char ipbuf[16] = "";
  60. inet_pton(AF_INET, buf+6, &caddr.sin_addr);//给addr套接字地址再赋值.
  61. printf("\rsay to %s\n",inet_ntop(AF_INET,&caddr.sin_addr,ipbuf,sizeof(ipbuf)));
  62. continue;
  63. }
  64. else if(strcmp(buf, "exit")==0)
  65. {
  66. close(udpfd);
  67. exit(0);
  68. }
  69. sendto(udpfd, buf, strlen(buf),0,(struct sockaddr*)&caddr, sizeof(caddr));
  70. }
  71. else if( ( fds[1].revents & POLLIN ) == POLLIN ){ //udp套接字
  72. struct sockaddr_in addr;
  73. char ipbuf[INET_ADDRSTRLEN] = "";
  74. socklen_t addrlen = sizeof(addr);
  75. bzero(&addr,sizeof(addr));
  76. recvfrom(udpfd, buf, 100, 0, (struct sockaddr*)&addr, &addrlen);
  77. printf("\r\033[31m[%s]:\033[32m%s\n",inet_ntop(AF_INET,&addr.sin_addr,ipbuf,sizeof(ipbuf)),buf);
  78. }
  79. }
  80. else if(0 == ret){ // 超时
  81. printf("time out\n");
  82. }
  83. }
  84. return 0;
  85. }


运行结果:



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/383681.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

操作系统【一】进程同步和信号量

基本概念 进程异步性特征&#xff1a;各并发执行的进程以各自独立的&#xff0c;不可预知的速度向前推进。 进程同步又称作直接制约关系&#xff0c;他是指为完成某种任务而建立的两个或者多个进程&#xff0c;这些进程因为需要在某些位置上协调他们的工作顺序而产生的制约关…

计算机网络【四】数据链路层基本概念+点到点通信(PPP协议)

数据链路层基本概念 路由器是网络层设备 数据链路层&#xff1a;数据管道&#xff0c;传输的是数据包加上发送地址&#xff0c;接收地址&#xff0c;校验的数据帧 数据链路层的信道类型&#xff1a; 点到点信道&#xff1a;使用一对一的点到点通信方式&#xff08;两个设备…

Linux网络编程——tcp并发服务器(poll实现)

https://blog.csdn.net/lianghe_work/article/details/46535859想详细彻底地了解poll或看懂下面的代码请参考《Linux网络编程——I/O复用之poll函数》 代码&#xff1a;#include <string.h>#include <stdio.h>#include <stdlib.h>#include <unistd.h>#…

Linux网络编程——I/O复用函数之epoll

https://blog.csdn.net/lianghe_work/article/details/46544567一、epoll概述epoll 是在 2.6 内核中提出的&#xff0c;是之前的 select() 和 poll() 的增强版本。相对于 select() 和 poll() 来说&#xff0c;epoll 更加灵活&#xff0c;没有描述符限制。epoll 使用一个文件描述…

操作系统【三】内存管理基础+连续内存分配

内存的基础知识 内存分为按字节编址&#xff08;8位&#xff09;和字编制&#xff08;不同计算机不一样&#xff0c;64位计算机就是64位&#xff0c;即8个字节&#xff09; 相对地址逻辑地址 绝对地址物理地址 从逻辑地址到物理地址的转换由装入解决。 装入的三种方式 绝对…

MSG_PEEK标志

https://blog.csdn.net/aspnet_lyc/article/details/28937229 MSG_PEEK标志可以用来读取套接字接收队列中可读的数据&#xff0c;一些情况会用到它&#xff0c;比如为了避免不阻塞而先检查套接字接收队列中可读的数据长度&#xff0c;再采取相应操作。当然&#xff0c;不阻塞也…

C++的单例模式与线程安全单例模式(懒汉/饿汉)

https://www.cnblogs.com/qiaoconglovelife/p/5851163.html1 教科书里的单例模式我们都很清楚一个简单的单例模式该怎样去实现&#xff1a;构造函数声明为private或protect防止被外部函数实例化&#xff0c;内部保存一个private static的类指针保存唯一的实例&#xff0c;实例的…

计算矩阵的逆和行列式的值(高斯消元+LU分解)

计算矩阵的逆 选主元的高斯消元法 朴素的高斯消元法是将矩阵A和单位矩阵放在一起&#xff0c;通过行操作&#xff08;或者列操作&#xff09;将A变为单位矩阵&#xff0c;这个时候单位矩阵就是矩阵A的逆矩阵。从上到下将A变为上三角矩阵的复杂度为O(n3n^3n3)&#xff0c;再从下…

Linux网络编程——tcp并发服务器(epoll实现)

https://blog.csdn.net/lianghe_work/article/details/46551871通过epoll实现tcp并发回执服务器&#xff08;客户端给服务器发啥&#xff0c;服务器就给客户端回啥&#xff09; 代码如下&#xff1a;#include <string.h>#include <stdio.h>#include <stdlib.h&g…

证明AVL树的上界和下界

对于n个节点的AVL树&#xff0c;其高度最低的时候肯定为叶子节点只在最后一层和倒数第二层的时候。即对于2k−1<n≦2k1−12^k-1< n\leqq 2^{k1}-12k−1<n≦2k1−1的时候下界都为kkk。因此下界为h┌log2(n1)┐−1h\ulcorner log_2(n1)\urcorner-1h┌log2​(n1)┐−1 对…

浅谈dup和dup2的用法

https://blog.csdn.net/u012058778/article/details/78705536一、dup和dup2函数 这两个函数都可以来复制一个现有的文件描述符&#xff0c;他们的声明如下&#xff1a;#include <unistd.h>int dup(int fd);int dup2(int fd, int fd 2); 123 关于dup函数&#xff0c;当我…

C++ cin 实现循环读入

习惯了使用while(~scanf("%d",x)){}来实现循环读入&#xff0c;但是有时候使用泛型编程的时候就必须使用C中的cin&#xff0c;但是当我想要实现循环读入的时候却发现有些困难。 我们可以看一下下面这个简单的例子&#xff1a; #include <iostream>using name…

BFPTR算法详解+实现+复杂度证明

BFPTR算法是由Blum、Floyed、Pratt、Tarjan、Rivest这五位牛人一起提出来的&#xff0c;其特点在于可以以最坏复杂度为O(n)O(n)O(n)地求解top−ktop-ktop−k问题。所谓top−ktop-ktop−k问题就是从一个序列中求解其第k大的问题。 top−ktop-ktop−k问题有许多解决方法&#xff…

随机化快速排序+快速选择 复杂度证明+运行测试

对于快速排序和快速选择我之前的文章已经有详细的说明&#xff0c;需要了解的同学可以移步 传送门&#xff1a;快速排序&#xff5c;快速选择(BFPTR) 所谓随机化其实就是选择枢纽的时候使用随机数选择而已&#xff0c;实现起来很简单。但是我们使用随机数如何保证复杂度呢&am…

【Linux基础】Linux的5种IO模型详解

引入 为了更好的理解5种IO模型的区别&#xff0c;在介绍IO模型之前&#xff0c;我先介绍几个概念 1.进程的切换 &#xff08;1&#xff09;定义 为了控制进程的执行&#xff0c;内核必须有能力挂起正在CPU上运行的进程&#xff0c;并恢复以前挂起的某个进程的执行。即从用户…

计算机网络【五】广播通信+以太网

局域网的拓扑 广域网使用点到点通信 局域网使用广播通信 可以随意向网络中添加设备。 总线网星形网&#xff0c;使用集线器。现在多使用星形网络。环状网树形网 其中匹配电阻用来吸收总线上传播的信号。 共享通信媒体 静态划分信道 频分复用、时分复用、波分复用、码分复用…

聊聊Linux 五种IO模型

一篇《聊聊同步、异步、阻塞与非阻塞》已经通俗的讲解了&#xff0c;要理解同步、异步、阻塞与非阻塞重要的两个概念点了&#xff0c;没有看过的&#xff0c;建议先看这篇博文理解这两个概念点。在认知上&#xff0c;建立统一的模型。这样&#xff0c;大家在继续看本篇时&#…

操作系统【四】分页存储管理

连续分配方式的缺点&#xff1a; 固定分区分配&#xff1a;缺乏灵活性&#xff0c;产生大量的内部碎片&#xff0c;内存的利用率较低 动态分区分配&#xff1a;会产生许多外部碎片&#xff0c;虽然可以用紧凑技术处理&#xff0c;但是紧凑技术的时间代价较高 基本分页存储管理…

操作系统【五】分段内存管理+段页式内存管理

基本分段存储管理 与分页最大的区别&#xff1a;离散分配时所分配地址空间的基本单位不同 进程的地址空间&#xff1a;按照程序自身的逻辑关系划分为若干个段&#xff0c;每个段都有一个段名&#xff0c;每段从0开始编址 内存分配规则&#xff1a;以段位单位进行分配&#xff…

计算机网络【六】网络层协议

网络层负责在不同网络之间尽力转发数据包&#xff08;基于数据包的IP地址转发&#xff09;。不负责丢失重传&#xff0c;也不负责顺序&#xff08;每一个数据包都是单独选择路径&#xff09;。 可靠传输是由传输层实现。 网络设备和OSI参考模型 通过分层&#xff0c;屏蔽了…