C++ 条件变量的使用

绪论

并发编程纷繁复杂,其中用于线程同步的主要工具——条件变量,虽然精悍,但是要想正确灵活的运用却并不容易。
对于条件变量的理解有三个难点:

  1. 为什么wait函数需要将解锁和阻塞、唤醒和上锁这两对操作编程原子的?
  2. 为什么wait函数需要配合while进行使用?
  3. 通知线程是应该先notifyunlock还是先unlocknotify

希望大家看完下面的介绍能够得到想要的答案。想要了解更多关于C++并发编程信息可以移步的我仓库:C++并发编程

条件变量

C++提供了两种条件变量的实现:std::condition_variablestd::condition_variable_any。前者只能和std::mutex配合使用,后者只需要符合互斥的标准即可。因为std::condition_variable_any更通用,所以可能产生额外的开销,如果没什么特殊需要,尽可能使用std::condition_variable

条件变量是非常重要的线程同步的手段(目前我认为是最重要的),因此对其的深入理解至关重要。

  • 条件变量总是和互斥一起配合使用,互斥用于保护共享数据,条件变量用于

    1. 通知(通知线程)
    2. 判断共享数据是否满足条件(等待线程)
  • 通知线程往往先通过互斥保护共享数据,对数据进行一定的修改后再发送通知(notify_one()、notify_all())。需要注意的是我们应尽可能在临界区内发送通知,从而避免可能出现的优先级翻转和条件变量失效问题。虽然临界区外通知可以让等待线程一旦被唤醒就能立即解锁互斥查看是否满足情况,但是在Pthread进行wait morphint后基本上两者没有性能上的差距。详细的分析可以参考博客:条件变量用例–解锁与signal的顺序问题。

    • notify_one()理论上只会唤醒一个等待线程,适用于共享变量数量发生变化的情况,例如通知消息队列中的消息个数增加。
    • notify_all()会唤醒所有等待该条件变量的线程,适用于共享变量状态发生变化的情况,例如通知所有工作线程开始计算。
  • 等待线程先获得互斥,然后将锁和判定条件传递给wait函数等待返回。

    • wait函数首先会根据判断条件判断是否满足条件(返回true

      • 如果满足条件,则直接返回(互斥依旧上锁)

      • 如果不满足条件,则阻塞等待,并解锁互斥(让其他线程得以修改共享数据的状态)。直到被notify函数唤醒,再次上锁,判断条件是否满足。这里的阻塞和解锁、唤醒和上锁都是原子的,就是为了避免两个动作分别执行出现的条件竞态。

        1. 解锁和阻塞是原子的:lock → !pred() → unlock → sleep;如果变量的改变以及唤醒事件发生在unlock和sleep中间,那么你不会检测到,也就是错过了这次唤醒。假如下次唤醒依赖于此次唤醒的成功(也就是说不会主动唤醒第二次),那么将发生死锁。
        2. 唤醒和上锁是原子的:wakeup → lock → !pred :如果条件在wakeup和lock之间从满足变成了不满足(不是因为其他等待线程修改,而是因为负责唤醒的线程自己再次修改了条件),那么此次唤醒将失败。假如后面条件的再次满足依赖于此次条件满足成功(也就是说条件不会再主动满足),那么将发生死锁。

        需要理解的是上面的死锁的出现是有限定条件的(例如唤醒之间的依赖、条件满足的依赖),虽然大多数情况下没有这么严格的条件,但是工具本身需要避免这种危险的情况。

        原子操作保证了重要的唤醒和条件满足都能够至少被一个等待线程看到。

      • 可以看到wait函数内部需要解锁互斥,所以就不能使用不提供unlock函数的lock_guard,而应该使用和互斥有相同接口的unique_lock

    • 其实C++的线程库是对pthread库的封装,因此也可以像pthread库一样只传入互斥,解锁并等待通知,一旦接收到通知后再上锁,然后在一个while循环中进行判断。

      while (!pred()) {cond_.wait(lk);  //调用pthread_cond_wait
      }
      

      对于传入判定条件的版本,其实内部也是这样的一个封装罢了。

  • 之所以说notify_one()理论上只会唤醒一个等待线程是因为存在调用一次notify_one()却唤醒了多个线程的可能性,甚至有时候没有调用notify等待线程都被唤醒,称这种意外唤醒等待线程的情况为伪唤醒。按照C++标准的规定,这种伪唤醒出现的数量和频率都不确定,因此要求等待线程的判定函数不能有副作用(可重用),并且需要在唤醒后再次判断条件是否满足,如果不满足则需要重新等待。这也是为什么上面的代码使用while进行条件判断而不是if的原因。

消息队列

//
// Created by edward on 22-11-16.
// use condtion_variable to genenrate a thread safe message queue
//#include "utils.h"
#include <mutex>
#include <queue>
#include <condition_variable>
#include <iostream>
#include <thread>
#include <string>template<typename T>
class MessageQueue {
public:void push(T t) {std::lock_guard lk(mtx_);       //互斥保护数据queue_.push(std::move(t));cond_.notify_one();				//临界区内发送通知,避免优先级反转和条件变量失效}T pop() {T frnt;std::unique_lock lk(mtx_);cond_.wait(lk, [&](){return !queue_.empty();});frnt = std::move(queue_.front());queue_.pop();return frnt;}
private:mutable std::mutex mtx_;mutable std::condition_variable cond_;std::queue<T> queue_;
};using namespace std;template<typename T>
void data_prepare(MessageQueue<T> &messageQueue) {T t;while (cin >> t) {messageQueue.push(std::move(t));}
}template<typename T>
void data_process(MessageQueue<T> &messageQueue) {T t;int idx = 0;while (true) {t = messageQueue.pop(); //数据的处理在临界区外edward::print("[", idx++, "]:", t);}
}int main() {MessageQueue<string> messageQueue;edward::print("test begin:");thread preparer(data_prepare<string>, ref(messageQueue));thread processer(data_process<string>, ref(messageQueue));preparer.join();//不用等待processer,如果preparer结束,则直接推出进程return 0;
}

运行结果

在这里插入图片描述

其中用到了我自己写的库函数头文件utils,如果想要了解更多信息可以移步C++ 工具函数库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/383503.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CentOS 7关闭firewalld启用iptables

在CentOS7中&#xff0c;有很多CentOS 6中的常用服务发生了变化。 其中iptables是其中比较大的一个。防火墙iptables被firewalld取代。 本文将介绍&#xff0c;如果采用systemctl关闭firewalld&#xff0c;开启iptables。 1.关闭firewalld [roothwcentos70-01 system]# systemc…

MP4文件格式的解析,以及MP4文件的分割算法

mp4应该算是一种比较复杂的媒体格式了&#xff0c;起源于QuickTime。以前研究的时候就花了一番的功夫&#xff0c;尤其是如何把它完美的融入到视频点播应用中&#xff0c;更是费尽了心思&#xff0c;主要问题是处理mp4文件庞大的“媒体头”。当然&#xff0c;流媒体点播也可以采…

MP4文件格式详解

一、基本概念 1.mp4概述 MP4文件中的所有数据都装在box&#xff08;QuickTime中为atom&#xff09;中&#xff0c;也就是说MP4文件由若干个box组成&#xff0c;每个box有类型和长度&#xff0c;可以将box理解为一个数据对象块。box中可以包含另一个box&#xff0c;这种box称为c…

H264—MP4格式及在MP4文件中提取H264的SPS、PPS及码流

SkySeraph Apr 1st 2012 Email&#xff1a;skyseraph00163.com 一、MP4格式基本概念 MP4格式对应标准MPEG-4标准(ISO/IEC14496) 二、MP4封装格式核心概念 1 MP4封装格式对应标准为 ISO/IEC 14496-12&#xff08;信息技术 视听对象编码的第12部分: ISO 基本媒体文件格式/Info…

Linux应用程序在内存中的地址布局

栈&#xff1a;局部变量&#xff08;初始化的和未初始化的&#xff0c;但不包含局部静态变量&#xff09;、局部只读变量&#xff08;const&#xff09;堆&#xff1a;动态分配的区域&#xff08;如使用malloc函数申请的区域&#xff09;BSS段&#xff1a;存储未初始化的全局变…

wpa_supplicant与wpa_cli之间通信过程

wpa_supplicant编译&#xff1a; 1. wpa_supplicant/Android.mk : -- wpa_cli -- wpa_supplicant -- libwpa_client.so 2. hostapd/Android.mk : -- hostapd_cli -- hostapd 从通信层次上划分&#xff0c;wpa_supplicant提供向上的控制接口 control interface&#xff0c;用于与…

关于c语言字符串函数和一些内存函数的的简介

关于c语言字符串函数和一些内存函数的的简介 求字符串长度的函数 strlen函数介绍![在这里插入图片描述](https://img-blog.csdnimg.cn/20190301142458376.jpg)注模拟实现 . [1 ]计数器方式 因为strlen 是求字符串长度的函数&#xff0c;所以不能改变字符串本身&#xff0c;所…

用结构体写一个简单的通讯录

一个简单的通讯录 通讯录应该具备简单的一些功能 1 增添联系人 2 删除联系人 3 查找联系人 4 修改联系人 5 按名字给联系人排序 6 查看通讯录 除此之外&#xff0c;应该在实现上还应该具备一些其他的功能函数 比如 初始化通讯录 这些都是功能函数&#xff0c;而整个函数入口应…

c动态内存管理

动态内存管理 我们之前要开辟内存用的方法都是定义变量&#xff0c;比如 但是上述开辟内存的方法有两个特点 1空间开辟大小是固定的 2数组在申明的时候&#xff0c;必须指定数组的长度&#xff0c;它所需要的内存在编译时分配 malloc和free c中提供一个动态内存开辟函数 这…

右移函数(字符串,数组)

右移函数 以上是数组右移&#xff0c;将int换成char 把数组内容改成字符串就行。

c中指针简介

c中指针简介 首先我们来看一下指针的一些基本概念 ![在这里插入图片描述](https://img 而对于指针的应用&#xff0c;平常有一些形式&#xff0c;总结了一下大概有这几种用法 对于以上的几种用法&#xff0c;我依次给出详尽的解释 //这是一个普通的整型变量 1 //首先从P 处开…

判断一个字符串是否另一个字符串的右移后的

首先我们把需要判断的字符串传进来&#xff0c;开辟一块大小为两个字符串的长度总和加1的动态的空间&#xff0c;然后后字符串拷贝函数将一个字符串拷贝到开辟空降中&#xff0c;再将这个字符串再次连接到这块动态的空间中&#xff0c;等于就是将一个字符串拷贝了两遍。然后比较…

不带头结点的链表基础操作(初始化,增删改查)

链表是什么&#xff1f; **链表是一种物理存储单元上非连续、非顺序的存储结构&#xff0c;数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点&#xff08;链表中每一个元素称为结点&#xff09;组成&#xff0c;结点可以在运行时动态生成。每个结点包括…

链表面试题1:反转单链表,不带头结点。

三个指针p1,p2,p3&#xff0c;p1指向头结点的前一个结点&#xff0c;也就时指空&#xff0c;p2指向头结点&#xff0c;p3指向头结点下一个结点。 p3指向p2的下一个&#xff0c;让p2指针域指向p1&#xff0c;让p1挪到p2上&#xff0c;再让p2指向p3.

链表面试题2:编写代码,以给定值x为基准将链表分割成两部分,所有小于x的结点排在大于或等于x的结点之前

我们可以&#xff0c;用两个新链表&#xff0c;一个存比基准值大的&#xff0c;另一个存比基准值小的。然后再拼接在一起。 用尾插的方法&#xff0c;首先说小的&#xff0c;创建两个指针&#xff0c;一个头&#xff0c;一个尾&#xff0c;再创建个指针跑链表&#xff0c;扫描…

栈和队列的基本操作(栈和队列的区别)

数据结构中的栈与内存中的栈的不同 一、数据结构中的堆栈 在数据结构中的堆栈&#xff0c;实际上堆栈是两种数据结构&#xff1a;堆和栈。堆和栈都是一种数据项按序排列的数据结构。 1.栈就像装数据的桶或箱子 我们先从大家比较熟悉的栈说起吧&#xff0c;它是一种具有后进先…

链表面试题3:将两个有序链表合并为一个新的有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成 的。

链表面试题3&#xff1a;将两个有序链表合并为一个新的有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成 的。 首先我们的思想是将得一个链表和第二个链表的每个结点进行比较&#xff0c;谁小谁就插入到新链表的最后。 首先我们要判段链表是否为空&#xff0c;…

双向链表的操作(创建,插入,删除)

双向链表的代码看似复杂&#xff0c;其实很简单&#xff0c;只要画图便可明白&#xff0c; 删除 假如要删除的结点叫pos. pos->prev->nextpos->next; pos->next->prevpos->prev; free(pos);

二叉树的操作(前,中,后序遍历也叫深度优先遍历,非空结点的个数)递归实现

定义一个二叉树的结点 二叉树的前序遍历&#xff0c; 先访问根结点&#xff0c;再访问左&#xff0c;再访问右。 每次访问都要先看根结点是否为空&#xff0c;然后打印根结点&#xff0c;把此时根结点的左结点作为下一次递归的根结点&#xff0c;当把左结点遍历完后&#xff0…

二叉树的相关题(叶子结点个数,最大深度,找特殊值结点(值不重复),判断两个树是否相同,判断两个数是否为镜像树,是否为子树,)

叶子结点就是没有孩子结点&#xff0c;所以当当前根结点没有孩子结点的时候&#xff0c;就返回1&#xff0c;就是找到一个叶子结点&#xff0c;然后访问完每个不为空的结点就行&#xff0c;每次访问都是把当前结点的左/右结点作为新的结点&#xff0c;来判断。 求最大深度&…