时序预测 | MATLAB实现EEMD-GRU、GRU集合经验模态分解结合门控循环单元时间序列预测对比

时序预测 | MATLAB实现EEMD-GRU、GRU集合经验模态分解结合门控循环单元时间序列预测对比

目录

    • 时序预测 | MATLAB实现EEMD-GRU、GRU集合经验模态分解结合门控循环单元时间序列预测对比
      • 效果一览
      • 基本介绍
      • 模型搭建
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现EEMD-GRU、GRU时间序列预测对比;
2.时间序列预测 就是先eemd把原输入全分解变成很多维作为输入 , 再输入GRU预测 ;
3.运行环境Matlab2020b及以上,输出RMSE、MAPE、MAE等多指标对比,
先运行main1_eemd_test,进行eemd分解;再运行main2_gru、main3_eemd_gru;再运行main4_compare,两个模型对比。
程序乱码是由于Matlab版本不一致造成的,处理方式如下:先重新下载程序,如XXX.m程序出现乱码,则在文件夹中找到XXX.m,右击选择打开方式为记事本文本文档(txt),查看文档是否乱码,通常不乱码,则删除Matlab中的XXX.m的全部代码,将文本文档中不乱码的代码复制到Matlab中的XXX.m中。

模型搭建

EEMD-GRU (Ensemble Empirical Mode Decomposition - Gated Recurrent Unit) 是一种将 EEMD 和 GRU 结合起来进行时间序列预测的方法。EEMD 用于将原始时间序列分解成多个固有模态函数 (Intrinsic Mode Functions, IMFs),然后 GRU 用于对这些 IMFs 进行建模和预测。
EEMD 是一种数据分解方法,将时间序列分解成多个 IMFs 和一个残差项。IMFs 是具有不同频率和振幅特征的函数,可以表示原始时间序列的不同成分。GRU (Gated Recurrent Unit):GRU 是一种循环神经网络 (Recurrent Neural Network, RNN) 的变体,具有门控机制,可以捕捉时间序列中的长期依赖关系。GRU 通过门控单元来控制信息的流动和记忆的更新。
EEMD-GRU 时间序列预测过程:
a. 将原始时间序列进行 EEMD 分解,得到多个 IMFs 和一个残差项。
b. 将每个 IMF 作为 GRU 的输入序列,训练多个 GRU 模型,每个模型对应一个 IMF。
c. 对于每个 GRU 模型,使用历史时刻的输入序列预测下一个时刻的值。
d. 将每个 GRU 模型的预测结果加权求和,得到最终的时间序列预测结果。
EEMD-GRU 时间序列预测公式:
假设有 N 个 IMFs,第 i 个 IMF 的 GRU 模型表示为 GRU_i。
对于第 i 个 GRU 模型,其输入序列为 X_i = [x_i1, x_i2, …, x_iT],其中 x_ij 表示第 i 个 IMF 在时间 j 的值。
模型 GRU_i 的预测结果为 y_i = [y_i1, y_i2, …, y_iT],其中 y_ij 表示模型 GRU_i 在时间 j 的预测值。
最终的时间序列预测结果为 y = w_1 * y_1 + w_2 * y_2 + … + w_N * y_N,其中 w_i 表示第 i 个 GRU 模型的权重。
以上是 EEMD-GRU 时间序列预测的基本原理和公式,通过将 EEMD 的分解结果与 GRU 的建模能力相结合,可以更好地捕捉时间序列的特征和趋势,提高预测的准确性。

程序设计

  • 完整程序和数据获取方式1:私信博主回复MATLAB实现EEMD-GRU、GRU集合经验模态分解结合门控循环单元时间序列预测对比,同等价值程序兑换;
  • 完整程序和数据下载方式2(资源处直接下载):MATLAB实现EEMD-GRU、GRU集合经验模态分解结合门控循环单元时间序列预测对比;
%% 创建混合网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  layers = [...% 输入特征sequenceInputLayer([numFeatures 1 1],'Name','input')sequenceFoldingLayer('Name','fold')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');%% 
% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;options = trainingOptions( 'adam', ...'MaxEpochs',500, ...'GradientThreshold',1, ...'InitialLearnRate',optVars.InitialLearnRate, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',400, ...'LearnRateDropFactor',0.2, ...'L2Regularization',optVars.L2Regularization,...'Verbose',false, ...'Plots','none');%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);
desvio_estandar=std(x);
x=x/desvio_estandar;
xconruido=x+Nstd*randn(size(x));
[modos, o, it]=emd(xconruido,'MAXITERATIONS',MaxIter);
modos=modos/NR;
iter=it;
if NR>=2for i=2:NRxconruido=x+Nstd*randn(size(x));[temp, ort, it]=emd(xconruido,'MAXITERATIONS',MaxIter);temp=temp/NR;lit=length(it);[p liter]=size(iter);if lit<literit=[it zeros(1,liter-lit)];end;if liter<lititer=[iter zeros(p,lit-liter)];end;iter=[iter;it];[filas columnas]=size(temp);[alto ancho]=size(modos);diferencia=alto-filas;if filas>altomodos=[modos; zeros(abs(diferencia),ancho)];end;if alto>filastemp=[temp;zeros(abs(diferencia),ancho)];end;modos=modos+temp;end;
end;
its=iter;
modos=modos*desvio_estandar;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/38291.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springcloud+nacos实现灰度发布

灰度发布 gateway网关实现灰度路由 灰度发布实体 package com.scm.boss.common.bean;import lombok.Data; import lombok.experimental.Accessors;import java.io.Serializable;/*** 灰度发布实体*/ Data Accessors(chain true) public class GrayBean implements Serializ…

【Linux】—— 进程程序替换

目录 序言 &#xff08;一&#xff09;替换原理 1、进程角度——见见猪跑 1️⃣ 认识 execl 函数 2、程序角度——看图理解 &#xff08;二&#xff09;替换函数 1、命名理解 2、函数理解 1️⃣execlp 2️⃣execv 3️⃣execvp 4️⃣execle 5️⃣execve 6️⃣execve…

机器学习重要内容:特征工程之特征抽取

目录 1、简介 2、⭐为什么需要特征工程 3、特征抽取 3.1、简介 3.2、特征提取主要内容 3.3、字典特征提取 3.4、"one-hot"编码 3.5、文本特征提取 3.5.1、英文文本 3.5.2、结巴分词 3.5.3、中文文本 3.5.4、Tf-idf ⭐所属专栏&#xff1a;人工智能 文中提…

LLaMA长度外推高性价比trick:线性插值法及相关改进源码阅读及相关记录

前言 最近&#xff0c;开源了可商用的llama2&#xff0c;支持长度相比llama1的1024&#xff0c;拓展到了4096长度&#xff0c;然而&#xff0c;相比GPT-4、Claude-2等支持的长度&#xff0c;llama的长度外推显得尤为重要&#xff0c;本文记录了三种网络开源的RoPE改进方式及相…

Vue-打印组件页面

场景: 需要将页面的局部信息打印出来&#xff0c;只在前端实现&#xff0c;不要占用后端的资源。经过百度经验&#xff0c;决定使用 print-js和html2canvas组件。 1. 下载包 npm install print-js --save npm install --save html2canvas 2. 组件内引用 <script>impo…

C语言之数组指针和指针数组

C语言之数组指针和指针数组 一、含义二、定义2.1 指针数组2.2 数组指针 三、使用3.1 指针数组在参数传递时的使用3.1.1 指针数组的排序3.2 数组指针在参数传递时的使用 一、含义 指针数组&#xff1a;顾名思义&#xff0c;其为一个数组&#xff0c;数组里面存放着多个指针&…

C#生成随机验证码

以下是一个简单的C#验证码示例&#xff1a; private void GenerateCaptcha() {// 生成随机字符串string chars "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";Random random new Random();string captchaString new string(Enumerable.Repe…

TPAMI, 2023 | 用压缩隐逆向神经网络进行高精度稀疏雷达成像

CoIR: Compressive Implicit Radar | IEEE TPAMI, 2023 | 用压缩隐逆向神经网络进行高精度稀疏雷达成像 注1:本文系“无线感知论文速递”系列之一,致力于简洁清晰完整地介绍、解读无线感知领域最新的顶会/顶刊论文(包括但不限于Nature/Science及其子刊;MobiCom, Sigcom, MobiSy…

Java【算法 04】HTTP的认证方式之DIGEST认证详细流程说明及举例

HTTP的认证方式之DIGEST 1.是什么2.认值流程2.1 客户端发送请求2.2 服务器返回质询信息2.2.1 质询参数2.2.2 质询举例 2.3 客户端生成响应2.4 服务器验证响应2.5 服务器返回响应 3.算法3.1 SHA-2563.1.1 Response3.1.2 A13.1.3 A2 3.2 MD53.2.1 Request-Digest3.2.2 A13.2.3 A2…

CSS3 中新增了哪些常见的特性?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 圆角&#xff08;Border Radius&#xff09;⭐ 渐变&#xff08;Gradients&#xff09;⭐ 阴影&#xff08;Box Shadow&#xff09;⭐ 文本阴影&#xff08;Text Shadow&#xff09;⭐ 透明度&#xff08;Opacity&#xff09;⭐ 过渡&…

Spring boot与Spring cloud 之间的关系

Spring boot与Spring cloud 之间的关系 Spring boot 是 Spring 的一套快速配置脚手架&#xff0c;可以基于spring boot 快速开发单个微服务&#xff0c;Spring Boot&#xff0c;看名字就知道是Spring的引导&#xff0c;就是用于启动Spring的&#xff0c;使得Spring的学习和使用…

MATLAB中xlsread函数用法

目录 语法 说明 示例 将工作表读取到数值矩阵 读取元胞的范围 读取列 请求数值、文本和原始数据 对工作表执行函数 请求自定义输出 局限性 xlsread函数的功能是读取Microsoft Excel 电子表格文件 语法 num xlsread(filename) num xlsread(filename,sheet) num x…

Nacos和GateWay路由转发NotFoundException: 503 SERVICE_UNAVAILABLE “Unable to find

问题再现&#xff1a; 2023-08-15 16:51:16,151 DEBUG [reactor-http-nio-2][CompositeLog.java:147] - [dc73b32c-1] Encoding [{timestampTue Aug 15 16:51:16 CST 2023, path/content/course/list, status503, errorService Unavai (truncated)...] 2023-08-15 16:51:16,17…

leetcode27—移除元素

思路&#xff1a; 参考26题目双指针的思想&#xff0c;只不过这道题不是快慢指针。 看到示例里面数组是无序的&#xff0c;也就是说后面的元素也是可能跟给定 val值相等的&#xff0c;那么怎么处理呢。就想到了从前往后遍历&#xff0c;如果left对应的元素 val时&#xff0c…

汽车制造业上下游协作时 外发数据如何防泄露?

数据文件是制造业企业的核心竞争力&#xff0c;一旦发生数据外泄&#xff0c;就会给企业造成经济损失&#xff0c;严重的&#xff0c;可能会带来知识产权剽窃损害、名誉伤害等。汽车制造业&#xff0c;会涉及到重要的汽车设计图纸&#xff0c;像小米发送汽车设计图纸外泄事件并…

[足式机器人]Part5 机械设计 Ch00/01 绪论+机器结构组成与连接 ——【课程笔记】

本文仅供学习使用 本文参考&#xff1a; 《机械设计》 王德伦 马雅丽课件与日常作业可登录网址 http://edu.bell-lab.com/manage/#/login&#xff0c;选择观摩登录&#xff0c;查看2023机械设计2。 机械设计-Ch00Ch01——绪论机器结构组成与连接 Ch00-绪论0.1 何为机械设计——…

12.Eclipse导入Javaweb项目

同事复制一份他的项目给我ekp.rar (懒得从SVN上拉取代码了)放在workspace1目录下 新建一个文件夹 workspace2&#xff0c;Eclipse切换到workspace2工作空间 选择Import导入 选择导入的项目(这里是放到workspace1里面) 拷贝一份到workspace2里面 例子 所有不是在自己电脑上开发…

可白嫖的4家免费CDN,并测试其网络加速情况(2023版)

网站加载速度优化过程中&#xff0c;不可避免的会用上CDN来加速资源的请求速度。但是市面上的CDN资源几乎都是要收费的&#xff0c;而且价格还不便宜&#xff0c;对于小公司站长来讲&#xff0c;这将是一笔不小的开销。不过还是有一些良心公司给我们提供了免费的资源&#xff0…

ZooKeeper的基本概念

集群角色 通常在分布式系统中&#xff0c;构成一个集群的每一台机器都有自己的角色&#xff0c;最典型的集群模式就是Master/Slave模式(主备模式)。在这种模式中&#xff0c;我们把能够处理所有写操作的机器称为Master机器&#xff0c;把所有通过异步复制方式获取最新数据&…

Redis_亿级访问量数据处理

11. 亿级访问量数据处理 11.1 场景表述 手机APP用户登录信息&#xff0c;一天用户登录ID或设备ID电商或者美团平台&#xff0c;一个商品对应的评论文章对应的评论APP上有打卡信息网站上访问量统计统计新增用户第二天还留存商品评论的排序月活统计统计独立访客(Unique Vistito…