伙伴算法

通常情况下,一个高级操作系统必须要给进程提供基本的、能够在任意时刻申请和释放任意大小内存的功能,就像malloc 函数那样,然而,实现malloc 函数并不简单,由于进程申请内存的大小是任意的,如果操作系统对malloc 函数的实现方法不对,将直接导致一个不可避免的问题,那就是内存碎片。

内存碎片就是内存被分割成很小很小的一些块,这些块虽然是空闲的,但是却小到无法使用。随着申请和释放次数的增加,内存将变得越来越不连续。最后,整个内存将只剩下碎片,即使有足够的空闲页框可以满足请求,但要分配一个大块的连续页框就可能无法满足,所以减少内存浪费的核心就是尽量避免产生内存碎片。

针对这样的问题,有很多行之有效的解决方法,其中伙伴算法被证明是非常行之有效的一套内存管理方法,因此也被相当多的操作系统所采用。

伙伴算法,简而言之,就是将内存分成若干块,然后尽可能以最适合的方式满足程序内存需求的一种内存管理算法,伙伴算法的一大优势是它能够完全避免外部碎片的产生。什么是外部碎片以及内部碎片,前面博文slab分配器后面已有介绍。申请时,伙伴算法会给程序分配一个较大的内存空间,即保证所有大块内存都能得到满足。很明显分配比需求还大的内存空间,会产生内部碎片。所以伙伴算法虽然能够完全避免外部碎片的产生,但这恰恰是以产生内部碎片为代价的。

Linux 便是采用这著名的伙伴系统算法来解决外部碎片的问题。把所有的空闲页框分组为 11 块链表,每一块链表分别包含大小为1,2,4,8,16,32,64,128,256,512 和 1024 个连续的页框。对1024 个页框的最大请求对应着 4MB 大小的连续RAM 块。每一块的第一个页框的物理地址是该块大小的整数倍。例如,大小为 16个页框的块,其起始地址是 16 * 2^12 (2^12 = 4096,这是一个常规页的大小)的倍数。

下面通过一个简单的例子来说明该算法的工作原理:

假设要请求一个256(129~256)个页框的块。算法先在256个页框的链表中检查是否有一个空闲块。如果没有这样的块,算法会查找下一个更大的页块,也就是,在512个页框的链表中找一个空闲块。如果存在这样的块,内核就把512的页框分成两等分,一般用作满足需求,另一半则插入到256个页框的链表中。如果在512个页框的块链表中也没找到空闲块,就继续找更大的块——1024个页框的块。如果这样的块存在,内核就把1024个页框块的256个页框用作请求,然后剩余的768个页框中拿512个插入到512个页框的链表中,再把最后的256个插入到256个页框的链表中。如果1024个页框的链表还是空的,算法就放弃并发出错误信号。

简而言之,就是在分配内存时,首先从空闲的内存中搜索比申请的内存大的最小的内存块。如果这样的内存块存在,则将这块内存标记为“已用”,同时将该内存分配给应用程序。如果这样的内存不存在,则操作系统将寻找更大块的空闲内存,然后将这块内存平分成两部分,一部分返回给程序使用,另一部分作为空闲的内存块等待下一次被分配。

以上过程的逆过程就是页框块的释放过程,也是该算法名字的由来。内核试图把大小为 b 的一对空闲伙伴块合并为一个大小为 2b 的单独块。满足以下条件的两个块称为伙伴:

  • 两个块具有相同的大小,记作 b
  • 它们的物理地址是连续的
  • 第一块的第一个页框的物理地址是 2 * b * 2^12 的倍数

该算法是迭代的,如果它成功合并所释放的块,它会试图合并 2b 的块,以再次试图形成更大的块。

下面通过一个例子,来深入地理解一下伙伴算法的真正内涵(下面这个例子并不严格表示Linux 内核中的实现,是阐述伙伴算法的实现思想):

假设系统中有 1MB 大小的内存需要动态管理,按照伙伴算法的要求:需要将这1M大小的内存进行划分。这里,我们将这1M的内存分为 64K、64K、128K、256K、和512K 共五个部分,如下图 a 所示


1.此时,如果有一个程序A想要申请一块45K大小的内存,则系统会将第一块64K的内存块分配给该程序(产生内部碎片为代价),如图b所示;

2.然后程序B向系统申请一块68K大小的内存,系统会将128K内存分配给该程序,如图c所示;

3.接下来,程序C要申请一块大小为35K的内存。系统将空闲的64K内存分配给该程序,如图d所示;

4.之后程序D需要一块大小为90K的内存。当程序提出申请时,系统本该分配给程序D一块128K大小的内存,但此时内存中已经没有空闲的128K内存块了,于是根据伙伴算法的原理,系统会将256K大小的内存块平分,将其中一块分配给程序D,另一块作为空闲内存块保留,等待以后使用,如图e所示;

5.紧接着,程序C释放了它申请的64K内存。在内存释放的同时,系统还负责检查与之相邻并且同样大小的内存是否也空闲,由于此时程序A并没有释放它的内存,所以系统只会将程序C的64K内存回收,如图f所示;

6.然后程序A也释放掉由它申请的64K内存,系统随机发现与之相邻且大小相同的一段内存块恰好也处于空闲状态。于是,将两者合并成128K内存,如图g所示;

7.之后程序B释放掉它的128k,系统也将这块内存与相邻的128K内存合并成256K的空闲内存,如图h所示;

8.最后程序D也释放掉它的内存,经过三次合并后,系统得到了一块1024K的完整内存,如图i所示。

https://blog.csdn.net/wenqian1991/article/details/27968779

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/382630.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CRC冗余校验举例和原理

什么是CRC校验?CRC即循环冗余校验码:是数据通信领域中最常用的一种查错校验码,其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算&#xff0c…

C++ 多态原理初步01

当父类 Animal 的speak 前面加上 virtual 关键字之后,这个speak函数就变成了虚函数,Animal类结构发生了变化, 有了一个vfptr (虚函数指针),指向了vftable(虚函数表), 这个虚函数表里…

面向对象与面向过程的本质的区别

https://blog.csdn.net/jerry11112/article/details/79027834 如果你很想搞明白面向对象是什么,面向过程是什么,或者说二者之间的区别是什么,那么就花费一点时间来研读一下这篇博客,你一定会有很大的收获的! 一、面向…

grep参数说明及常用用法

grep参数说明及常用用法 查看文件内容 [koulocalhost ~]$ more size.txt b124230 b034325 a081016 m7187998 m7282064 a022021 a061048 m9324822 b103303 a013386 b044525 m8987131 B081016 M45678 B103303 BADc2345 [] : 查看符合范围内的信息 [koulocalho…

进程的状态与种类

● 运行:正占用处理器   ● 就绪:只要获得处理器即可运行。   ● 阻塞:正等待某个事件(如I/O完成)的发生。  在不少系统中,还增加了两种基本状态:   ● 新状态:一个进程刚刚…

int * p =NULL;和*p =NULL的区别a和a的区别

1.int * p NULL;和*p NULL的区别 1 .int * p NULL int *pNULL;定义一个指针变量p,其指向的内存里面保存的是int类型的数据;再定义变量p的同时把p的值设置为0x00000000, 而不是把*p的值设置为0x00000000 2.*p NULL int i 10&am…

当我们说TCP是可靠协议时,我们真正表达的是什么

转载出处:https://blog.csdn.net/dog250/article/details/82177299 很明确地说,从通信意义上推敲,TCP一点都不可靠。一个抽象的协议,怎么可能左右介质来保证可靠,不存在的。但凡是经由某种介质的通信行为均不可能是绝对…

有一个小白程序员,写了一个只能对5个数字进行排序的函数,现在有25个不重复的数字,

题目:有一个小白程序员,写了一个只能对5个数字进行排序的函数,现在有25个不重复的数字,请问小白同学最少调用几次该函数,可以找出其中最大的三个数? A.5 B.6 C.7 D.8 答案:C 解析&#xf…

初始序列为1 8 6 2 5 4 7 3一组数采用堆排序,当建堆(小根堆)完毕时,堆所对应的二叉树中序遍历序列为

初始序列为1 8 6 2 5 4 7 3一组数采用堆排序,当建堆(小根堆)完毕时,堆所对应的二叉树中序遍历序列为:() 8 3 2 5 1 6 4 7 3 2 8 5 1 4 6 7 3 8 2 5 1 6 7 4 8 2 3 5 1 4 7 6 A

设一组初始记录关键字序列为(25,50,15,35,80,85,20,40,36,70)进行一趟归并后的结果为

设一组初始记录关键字序列为(25,50,15,35,80,85,20,40,36,70),其中含有5个长度为2的有序子表,则用归并排序的方法对该记录关键字序列进行一趟归并…

文字常量区和栈区考点

求以下程序输出结果 #include <stdio.h>char * fun1() {char * str "hello";return str; }char * fun2() {char str[] "world";return str; } int main() {printf("%s\n", fun1()); printf("%s\n", fun2()); return 0; }结…

判断栈的压入和弹出

序列1&#xff0c;2&#xff0c;3&#xff0c;4&#xff0c;5是压栈序列。序列 4&#xff0c;3&#xff0c;5&#xff0c;1&#xff0c;2是弹出序列。判断第二个是不是弹出序列 三步走 如果下一个弹出的数字刚好是栈顶数字&#xff0c;直接弹出如果不在栈顶&#xff0c;就一直…

动态规划学习笔记2

题目描述&#xff1a; 在一个mn的棋盘的每一格都放有一个礼物&#xff0c;每个礼物都有一定的价值&#xff08;价值大于0&#xff09;。你可以从棋盘的左上角开始拿格子里的礼物&#xff0c;并每次向右或者向下移动一格直到到达棋盘的右下角。给定一个棋盘及其上面的礼物&…

内存碎片产生原因及解决办法

来源&#xff1a;知乎链接&#xff1a;https://www.zhihu.com/question/51836333/answer/145693402内存碎片通常分为内部碎片和外部碎片&#xff1a; 1. 内部碎片是由于采用固定大小的内存分区&#xff0c;当一个进程不能完全使用分给它的固定内存区域时就产生了内部碎片&…

KMP算法的举例加图解

文章出处&#xff1a;阮一峰&#xff0c;进行重新排版整理 举例来说&#xff0c;有一个字符串"BBC ABCDAB ABCDABCDABDE"&#xff0c;我想知道&#xff0c;里面是否包含另一个字符串"ABCDABD"&#xff1f; 首先&#xff0c;字符串"BBC ABCDAB ABCDAB…

进程间通讯的四种方式

文章目录共享内存信号管道消息队列通信方法 无法介于内核态与用户态的原因 管道&#xff08;不包括命名管道&#xff09; 局限于父子进程间的通信。 消息队列 在硬、软中断中无法无阻塞地接收数据。 信号量 无法介于内核态和用户态使用。 共享内存 需要信号量辅助&#xff0c;而…

TCP/IP四层模型

文章目录TCP/IP协议族体系结构以及主要协议数据链路层网络层传输层应用层TCP/IP协议族体系结构以及主要协议 TCP/IP协议族是一个四层协议系统&#xff0c;自底而上分别是数据链路层、网络层、传输层和应用层。每一层完成不同 的功能&#xff0c;且通过若干协议来实现&#xff…

Manacher算法图解

看了好久的Manacher算法&#xff0c;觉得还是要自己画一遍&#xff0c;自己把代码写一遍才能理解 下面分享一下&#xff0c;如果有错&#xff0c;希望指正 简陋版本的&#xff0c;但是他基本只是做到了求取最长回文字符串&#xff0c;严格来说它并不是Manacher’s Algorithm-…

Flink 客户端操作命令及可视化工具

Flink提供了丰富的客户端操作来提交任务和与任务进行交互。下面主要从Flink命令行、Scala Shell、SQL Client、Restful API和 Web五个方面进行整理。 在Flink安装目录的bin目录下可以看到flink&#xff0c;start-scala-shell.sh和sql-client.sh等文件&#xff0c;这些都是客户…