题意:给定n个值,然后把这n个值分为m-1段,每段的一半长度不超过k,求分得的的段中,最大的半段的最小值。
思路:二分+dp,dp(i,0)表示前i个不超过x的最小段数,该数据不超过m-1就表示可行,01表示奇数和偶数便于转移。
code:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <sstream>
#include <string>
#include <vector>
#include <list>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <bitset>using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;const int INF=0x3fffffff;
const int inf=-INF;
const int N=1000000;
const int M=40005;
const int mod=1000000007;
const double pi=acos(-1.0);#define cls(x,c) memset(x,c,sizeof(x))
#define cpy(x,a) memcpy(x,a,sizeof(a))
#define ft(i,s,n) for (int i=s;i<=n;i++)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lrt rt<<1
#define rrt rt<<1|1
#define middle int m=(r+l)>>1
#define lowbit(x) (x&-x)
#define pii pair<int,int>
#define mk make_pair
#define IN freopen("in.txt","r",stdin);
#define OUT freopen("out.txt","w",stdout);int T,n,m,k;
int v[M],s[M];
int dp[M][2];int ok(int x){dp[0][0]=0;dp[0][1]=INF;for (int i=2;i<=n;i+=2){dp[i][0]=dp[i][1]=INF;for (int j=1;j<=k&&i-2*j>=0;j++){if (s[i]-s[i-j]>x) break;if (s[i-j]-s[i-2*j]<=x){dp[i][0]=min(dp[i][0],dp[i-2*j][1]+1);dp[i][1]=min(dp[i][1],dp[i-2*j][0]+1);}}}if (dp[n][(m-1)%2]>m-1) return 0;return 1;
}
int main()
{scanf("%d",&T);while (T--){scanf("%d %d %d",&n,&m,&k);s[0]=0;ft(i,1,n){scanf("%d",v+i);s[i]=s[i-1]+v[i];}if ((n&1)||n<2*(m-1)||n>k*2*(m-1)) puts("BAD");else{int l=1,r=s[n];while (l<r){int mid=(r+l)>>1;if (ok(mid)) r=mid;else l=mid+1;}printf("%d\n",l);}}
}