DIP: Spectral Bias of DIP 频谱偏置解释DIP

On Measuring and Controlling the Spectral Bias of the Deep Image Prior

文章目录

  • On Measuring and Controlling the Spectral Bias of the Deep Image Prior
    • 1. 方法原理
      • 1.1 动机
      • 1.2 相关概念
      • 1.3 方法原理
        • 频带一致度量与网络退化
        • 谱偏移和网络结构的关系
        • Lipschitz-controlled 卷积层
        • Gaussian-controlled 上采样层
        • 自动停止迭代过程
    • 2. 实验结果
    • 3. 总结

文章地址:https://arxiv.org/pdf/2107.01125.pdf

代码地址: https://github.com/shizenglin/Measure-and-Control-Spectral-Bias

参考博客: https://zhuanlan.zhihu.com/p/598650125


1. 方法原理

1.1 动机

动机

  • Deep Image Prior已经被广泛地应用于去噪、超分、图像恢复等
  • 但是我们尚不清楚如何在网络架构的选择之外控制DIP
  • DIP存在性能达到峰值之后退化的问题 --> 需要early stopping

贡献

  • 使用谱偏移度量和解释 DIP的原理
    • DIP学习目标图像低频分量的效率比高频分量高
  • 控制谱偏移
    • 使用Lipschitz-controlled 正则化和 Lipschitz 批归一化加速和稳定优化过程
    • 使用 上采样方法(bilinear upsampling)引入了倾向于恢复低频分量的特点(谱偏移)
    • 使用了一种简单的early stopping策略防止多余的计算

1.2 相关概念

谱偏移原则是指:神经网络拟合低频信息的效率比高频信息快

相关文章参考:

  • On the Spectral Bias of Neural Networks
  • FREQUENCY PRINCIPLE: FOURIER ANALYSIS SHEDS LIGHT ON DEEP NEURAL NETWORKS

用其中的一些图进行解释:

  • 随着迭代的进行,神经网络的输出(绿色线)首先拟合的是真实观测数据的低频,然后再去逐渐拟合高频

在这里插入图片描述


反(逆)问题根据观测结果获取真实模型的一种求解模式。具体的可以参考

  • Untrained Neural Network Priors for Inverse Imaging Problems: A Survey

注意反问题求解存在一个普遍的问题:多解性。也就是多个反演结果的合成数据都可以和观测数据匹配。通常一个减少多解性的方法就是添加约束条件(在公式中表现为正则化约束)


1.3 方法原理

频带一致度量与网络退化

  这篇文章是从频率域的角度进行谱偏移分析的,用 { θ 1 , . . . , θ T } \{\theta^{1},...,\theta^{T}\} {θ1,...,θT}表示第对应迭代次数网络的参数,用 { f θ 1 , . . . , f θ T } \{f_{\theta^{1}},...,f_{\theta^{T}}\} {fθ1,...,fθT}表示对应的网格过程。对图片频率分析需要使用傅里叶变换获得 频率域的信息,用 F ( f θ ( t ) ) F(f_{\theta^{(t)}}) F(fθ(t))表示。频谱图的表示如下:

如果对标签图片也做一次傅里叶变换,那么可以求解网络输出和这个结果的比值
H θ ( t ) = F { f θ ( t ) } F { y 0 } H_{\theta^{(t)}} = \frac{F\{f_{\theta^{(t)}}\}}{F\{y_0\}} Hθ(t)=F{y0}F{fθ(t)}

  • 这个比值越接近于1表示网络输出和标签的相关性越高
  • H图像是一个以中心对称的图像,这里为方便统计就将其分割成为多个同心圆环,求圆环中的平均值作为这个圈内的值。也就是将一个二维的度量变为了一个一维的度量
  • 文章中将频率划分为了:lowest、low、medium、high和highest五个部分

这个度量比值在DIP不同应用场景中随着迭代次数的变化

  • 随着DIP迭代次数的增加,PSNR会先达到最高然后缓慢降低(性能达到峰值之后会下降)
  • 在PSRN最高的时候(图中绿线),恰好是lowest分量的频带一致性刚好最高的时候
  • 通过下图验证了 DIP也存在谱偏移的现象:低频分量学得更快且频带一致性很高,而高频分量学习相对较慢且频带一致性较低
  • 随着高频部分的频带一致性提高,PSNR下降

谱偏移和网络结构的关系

前面有研究表示Encoder-Decoder结构的DIP效果更好,这里作者对比了三种不同结构进行测试对比(a. 没有Encoder部分的DIP; b. 没有上采样层的DIP;):

  • 不论什么结构谱偏移都存在
  • 去掉上采样层的Decoder结构(ConvNet)拟合高频的效率更高,这里表现为高频部分的频带一致性高
  • 无上采样层的ConvNet结构最大的PSNR比Decoder和DIP低

结论

  • 无训练网络UNNP可以解决逆图像问题的原因是:低频学习效率高,高频学习效率相对较慢(谱偏移)
  • 高频信息通常为为结构高频信息和噪声高频信息,当网络开始学习噪声高频信息的时候,网络恢复的性能开始下降
  • 这里通过一个类似消融实验的方法说明上采样层是可以提高PSNR的,但是这会影响低频的收敛速度

防止网络退化,平衡性能与效率的方向

  • 保证性能的前提下,使用参数量更少的 Decoder结构 替代DIP的 Encoder-Decoder结构
  • 性能退化:抑制网络对高频噪声的学习(使用上采样层)
  • 加速收敛:使用更合适的上采样层
  • 提前停止策略:自动检测?

Lipschitz-controlled 卷积层

从频率域理解卷积操作

  • 对一个时间域/空间域的变量做一个傅里叶变换其实是将作用域变换到了频率域,这样的其中一个作用是:
    • 将空间域的卷积操作 变为 频率域的乘积操作,简化计算
    • 当然对于信号处理还有更多的好处,比如FK变换可以用于滤波
  • 图像和“卷积核”的作用在频率域其实就是一个乘积过程
    • 在这里插入图片描述

卷积核具有滤波的作用,但是什么样的卷积核可以抑制高频呢?


L-Lipschitz连续
这个概念很有意思,WGAN-GP中也用到了

其定义是:如果函数f在区间Q中,以常数L Lipschitz连续,那么对于 x , y ∈ Q x,y \in Q x,yQ有:
∣ ∣ f ( x ) − f ( y ) ∣ ∣ ≤ L ∣ ∣ x − y ∣ ∣ ||f(x)- f(y)|| \leq L||x - y|| ∣∣f(x)f(y)∣∣L∣∣xy∣∣

常数L就被称为函数f在区间Q上的 Lipschitz常数。Lipschitz连续其实是限制了连续函数f的局部变动幅度不能超过某一个常量。我个人感觉一个非常更简单地理解这个概念的方法就是将稍微变动一下这个公式:
∣ ∣ f ( x ) − f ( y ) ∣ ∣ ∣ ∣ x − y ∣ ∣ ≤ L \frac{||f(x)- f(y)||}{||x - y||} \leq L ∣∣xy∣∣∣∣f(x)f(y)∣∣L
这个东西看起来就像是求导了,更多的可以参考https://blog.csdn.net/FrankieHello/article/details/105739610


结合Lipschitz和频谱分析

假设卷积层的 f f f是符合C-Lipschitz的,存在:
∣ f ^ ( k ) ∣ ≤ C ∣ k ∣ 2 ≤ ∣ ∣ w ∣ ∣ s n ∣ k ∣ 2 |\hat{f}(k)| \leq \frac{C}{|k|^2} \leq \frac{||w||_{sn}}{|k|^2} f^(k)k2Ck2∣∣wsn

  • k表示频率, ∣ f ^ ( k ) ∣ |\hat{f}(k)| f^(k)表示傅里叶系数的模(有实部和虚部)
  • 分母是 k 2 k^2 k2表示在高频的时候衰减很强,学习更高的频率需要更高的频谱范数(分子)
  • ∣ ∣ w ∣ ∣ s n ||w||_{sn} ∣∣wsn 表示卷积层参数矩阵w的谱范数,可以通过限制谱范数的上限来限制卷积层学习更高频率的能力
    • ∣ ∣ w ∣ ∣ w ∣ ∣ s n ∣ ∣ s n = 1 ||\frac{w}{||w||_{sn}}||_{sn} = 1 ∣∣∣∣wsnwsn=1, ∣ ∣ w λ ∣ ∣ w ∣ ∣ s n ∣ ∣ s n = λ ||\frac{w\lambda}{||w||_{sn}}||_{sn} = \lambda ∣∣∣∣wsnwλsn=λ
    • w m a x ( 1 , ∣ ∣ w ∣ ∣ s n / λ ) \frac{w}{max(1,||w||_{sn}/\lambda)} max(1,∣∣wsn/λ)w

注意这里我们想要达到的一个效果就是:限制最高可以学习的频率。可以选择一个合适的 λ \lambda λ在保证恢复效果的同时不去恢复噪声信号。

其他网络层对Lipschitz常数的影响


Gaussian-controlled 上采样层

插值、邻近上采样层的平滑操作会让DIP网络收敛速度变慢,但是上采样层对于抑制高频信息又有一定的作用,为了平衡二者作者引入了 gaussian-controlled上采样层。

方法就是:转置卷积 + 高斯核

  • 转置卷积可以自定义上采样的卷积核
  • 为了控制平滑程度,卷积核最简单的就是高斯核
  • 实验不同的高斯核 σ \sigma σ越小收敛越快,但是PSNR越小

自动停止迭代过程

  • 利用Lipschitz方法限制了网络学习的最高频率噪声,避免了网络的退化
  • 当高频部分到达了上界限,也就意味着网络在之前就已经收敛了
  • 怎么评估高频到达了上界限
    • r = B l u r r i n e s s S h a r p n e s s r = \frac{Blurriness}{Sharpness} r=SharpnessBlurriness
    • 即当模糊度/锐度之间的导数小于预先设置的阈值的时候,停止迭代
    • r ( f θ ) = B ( f θ ) / S ( f θ ) r(f_{\theta}) = B(f_{\theta})/S(f_{\theta}) r(fθ)=B(fθ)/S(fθ)
    • Δ r ( f θ ( t ) ) = ∣ 1 n ∑ i = 1 n r ( f θ ( t − n − i ) ) − 1 n ∑ i = 1 n r ( f θ ( t − n − i ) ) ∣ \Delta r(f_{\theta ^{(t)}}) = |\frac{1}{n}\sum_{i=1}^{n}r(f_{\theta}^{(t-n-i)}) - \frac{1}{n}\sum_{i=1}^{n}r(f_{\theta}^{(t-n-i)})| Δr(fθ(t))=n1i=1nr(fθ(tni))n1i=1nr(fθ(tni))

2. 实验结果

  • 去噪

  • Image deblockign

    • 在这里插入图片描述
  • Image Inpainting

  • 在这里插入图片描述

3. 总结

研究思路

  1. 从谱偏置方向分析DIP的工作,网络先拟合低频信息,逐渐拟合高频信息
  2. 怎么控制拟合高频信息?–> 高频截断 --> 应用Lipschitz理论控制,解决网络层退化的问题
  3. 网络训练慢怎么解决?–>分析发现常规的上采样层相当于一个低通滤波器,引入了过多的低频分量导致很多时候收敛非常慢,所以使用 gaussian 核控制的转置卷积方法 平衡网络收敛效率的问题。
  4. 怎么Early stopping 减少迭代次数? --> 使用模糊度与锐度的比值的导数进行衡量

优点

  • 将GAN 谱优化的策略放到DIP之中,在频率域中分析各个层的性质:低频收敛快,高频收敛慢。
  • 用谱偏置的思路解释了网络退化问题
  • 提出频带一致性模糊度和锐度比值梯度 平衡了DIP收敛效率和效果

改进方向

  • 就个人观点:噪声这里假设都是高频的,但是低频噪声、结构噪声是否会有影响?
  • 该研究给实际应用DIP提供了很大的可能性,但是就实验效果来看并没有提升,甚至有所下降。所以基于这种方法怎么去同时提高效果?
  • 就我个人想法:继续减少参数化网络的参数量(PIP等工作),并且提高恢复的效果(持续研究方向) 是现在的研究方向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/37778.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux常规操作命令

日升时奋斗,日落时自省 目录 1、vim 1.1、工作模式 1.2、末行模式操作相关命令 1.2.1、保存退出操作 1.2.2、查找替换 1.3、输入模式操作相关命令 1.3.1、移动相关命令 1.3.2、删除和剪切命令 1.3.3、复制操作 1.3.4、撤销 2、head 3、tail 4、ps 5、…

数据结构算法--2 冒泡排序,选择排序,插入排序

基础排序算法 冒泡排序 思想就是将相邻元素两两比较,当一个元素大于右侧相邻元素时,交换他们的位置,小于右侧元素时,位置不变,最终序列中的最大元素,像气泡一样,到了最右侧。 这时冒泡排序第一…

linux Socket简单编程实例

服务端 网络编程中服务端接受连接的套接字创建过程如下: 1.调用socket函数创建套接字 2.调用bind函数分配IP地址和端口号 3.调用listen函数转为可接收请求状态 4.调用accept函数受理连接请求 #include <stdio.h> #include <stdlib.h> #include <sys/types.h>…

STM32自带的DSP库的滤波初体验(一)

最近在弄STM32自带的DSP库里的滤波&#xff0c;记录一下&#xff1a; arm_fir_instance_q15 instance_q15_S; #define NUM_TAPS 16 //滤波系数的个数 #define BLOCK_SIZE 32 q15_t firStateF32[BLOCK_SIZE NUM_TAPS]; q15_t Fir_Coeff[NUM_TAPS] {-79, -136, 312, 6…

MongoDB 简介

什么是MongoDB ? MongoDB 是由C语言编写的&#xff0c;是一个基于分布式文件存储的开源数据库系统。 在高负载的情况下&#xff0c;添加更多的节点&#xff0c;可以保证服务器性能。 MongoDB 旨在为WEB应用提供可扩展的高性能数据存储解决方案。 MongoDB 将数据存储为一个…

mqttfx连上OneNET生成token时的一大坑,报用户名或密码错误

整个流程如下连接&#xff1a; MQTT.fx和MQTTX 链接ONENET物联网开发平台避坑细节干货。 其中在生成token时&#xff0c;搞了半天在连接后都会报用户名密码错误 最后发现是格式问题&#xff0c;输入所有字符后一定要双击看是否可以全选中&#xff0c;可以全选中说明字符的格式…

java spring cloud 企业工程管理系统源码+二次开发+定制化服务 em

Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下&#xff1a; 首页 工作台&#xff1a;待办工作、消息通知、预警信息&#xff0c;点击可进入相应的列表 项目进度图表&#xff1a;选择&#xff08;总体或单个&#xff09;项目显…

冶金作业VR虚拟仿真厂家

对于高风险行业来说&#xff0c;开展安全教育培训是企业的重点工作&#xff0c;传统培训逐渐跟不上时代变化和工人需求&#xff0c;冶金安全VR模拟仿真培训系统作为一种新型的教育和培训工具&#xff0c;借助VR虚拟现实技术为冶金行业的工人提供一个安全、高效的培训环境。 冶金…

大疆秋招指南,网申测评和面试攻略

大疆秋招内容简介 这是一个非常卷的时代&#xff0c;一到毕业季&#xff0c;各种各样规模不一的公司&#xff0c;纷纷向社会招聘&#xff0c;竞争实力强&#xff0c;知名度越高的企业&#xff0c;往往越能得到能力出众的人才的青睐&#xff0c;也正是在一批批新血液的注入下&a…

户外组网摆脱布线困扰,工业5G网关实现无人值守、远程实时监控

在物联网通信技术发达的2023&#xff0c;网络覆盖对所及之处的全面覆盖&#xff0c;科技发展的促使下很多高危户外场景也在思考如何利用无线技术提高人员安全及现场无人化管理。 煤矿是我们国家不可缺少的重要能源&#xff0c;其开采过程的危险系数也是众所皆知的&#xff0c;…

为什么爬虫要用高匿代理IP?高匿代理IP有什么优点

只要搜代理IP&#xff0c;度娘就能给我们跳出很多品牌的推广&#xff0c;比如我们青果网路的。 正如你所看到的&#xff0c;我们厂商很多宣传用词都会用到高匿这2字。 这是为什么呢&#xff1f;高匿IP有那么重要吗&#xff1f; 这就需要我们从HTTP代理应用最多最广的&#xf…

云上社群学习系统部分接口设计详解

目录 一、项目简介 二、技术选型 三、数据库设计 四、接口设计及思考 回复帖子部分 4.1 回复帖子 4.1.1.1 实现逻辑 4.1.1.2创建Service接⼝ 4.1.1.3 实现Service接⼝ 4.1.1.4 实现Controller 4.1.1.5 测试接口 4.1.1.6 实现前端页面 4.2 点赞帖子 4.2.1.1 参数要求…

Storm学习之使用官方Docker镜像快速搭建Storm运行环境

文章目录 0.前言搭建完的效果 1.教程1.1.docker 安装 zookeeper1.2. 安装 storm nimbus1.3.docker 安装 supervisor1.4.docker 安装 storm-ui1.5.查看已经启动的容器1.6.提交topology到 storm集群 2.总结3.参考文档 0.前言 Apache Storm 官方也出了Docker 镜像 https://hub.do…

nodejs+vue+elementui美食网站的设计与实现演示录像2023_0fh04

本次的毕业设计主要就是设计并开发一个美食网站软件。运用当前Google提供的nodejs 框架来实现对美食信息查询功能。当然使用的数据库是mysql。系统主要包括个人信息修改&#xff0c;对餐厅管理、用户管理、餐厅信息管理、菜系分类管理、美食信息管理、美食文化管理、系统管理、…

数据可视化工具的三大类报表制作流程分享

电脑&#xff08;pc&#xff09;、移动、大屏三大类型的BI数据可视化报表制作步骤基本相同&#xff0c;差别就在于尺寸调整和具体的报表布局。这对于采用点击、拖拉拽方式来制作报表的奥威BI数据可视化工具来说就显得特别简单。接下来&#xff0c;我们就一起看看不这三大类型的…

界面组件DevExpress Reporting——支持图表本地化和可绑定属性

DevExpress Reporting是.NET Framework下功能完善的报表平台&#xff0c;它附带了易于使用的Visual Studio报表设计器和丰富的报表控件集&#xff0c;包括数据透视表、图表&#xff0c;因此您可以构建无与伦比、信息清晰的报表。 在最近的更新(v23.1)中&#xff0c;官方扩展了…

centos7 部署kubernetes(带自动部署脚本)

目录 一、实验规划 1、规划表 2、安装前宿主机检查 1.配置主机名 2.制作ssh免密&#xff08;VM1中执行&#xff09; 3.修改hosts 文件 4. 修改内核相关参数 5.加载模块 6. 清空iptables、关闭防火墙、关闭交换空间、禁用selinux 7. 安装ipvs与时钟同步 8.配置docker的…

ChatGPT收录

VSCode插件-ChatGPT 多磨助手 多磨助手 (domore.run) Steamship Steamship 免费合集 免费chatGPT - Ant Design Pro 免费AI聊天室 (xyys.one)

武汉地铁19号线完成5G专网全覆盖,现场测试下行速率超千兆!

近日&#xff0c;极目新闻记者从中国移动湖北公司获悉&#xff0c;随着武汉地铁19号线全线隧道正式贯通&#xff0c;湖北移动目前已完成新月溪公园至鼓架山站5G网络覆盖&#xff0c;轨行区5G专网全覆盖&#xff0c;并成功进行试车验证&#xff0c;19号线成为国内首条全线实现5G…

实习笔记(一)

自定义注解&#xff1a; 自定义注解中有三个元注解Target,Retention,Document /*** 系统日志注解** author Mark sunlightcsgmail.com*/ Target(ElementType.METHOD) Retention(RetentionPolicy.RUNTIME) Documented public interface SysLog {String value() default "…