数论神题
进击的羊角兽
题目描述:
求满足 \(a+b|ab(a,b \leq n,a \neq b)\)的有序数对\((a,b)\)的个数。
solution
设\((a,b)=d , (a < b \leq n)\),则$ a=xd , b=yd , ( x < y )$
\(a+b|ab\)
\(=(x+y)d|xyd^2\)
\(\because (x+y, x)=1,(x+y, y)=1\)
\(\therefore (x+y)|d\)
$\therefore x < y \leq \sqrt{n} $
设\(d=z(x+y)\),则\(a=xz(x+y) , b=yz(x+y)\)
即原问题为求数对\((x, y, z)( x < y \leq \sqrt{n}, z \leq \lfloor \frac {n}{y(x+y)} \rfloor)\)
\[Ans=\sum_{x < y} \sum_{(x, y)=1} \lfloor \frac {n}{y(x+y)} \rfloor\]
\[=\sum_{x < y} \sum_{d=(x, y)}\varepsilon(d) \lfloor \frac {n}{y(x+y)} \rfloor\]
\[=\sum_{x < y} \sum_{d|(x,y)} \mu(d) \lfloor \frac {n}{y(x+y)} \rfloor\]
\[=\sum_{x < y,d|x,d|y} \mu(d) \lfloor \frac {n}{y(x+y)} \rfloor\]
设\(x=x'd, y=y'd\)
\[=\sum_{x' < y'} \mu(d) \lfloor \frac {n}{y'(x'+y')d^2} \rfloor\]
为了方便,下面的\(x',y' \text 用回 x,y \text 表示\)
\[=\sum_{x < y} \mu(d) \lfloor \frac {n}{y(x+y)d^2} \rfloor (d \leq \sqrt{n})\]
现在就来解释一下上面的\(\varepsilon(), \mu()\)
这个是莫比乌斯函数的性质。
这样只有当\((x,y)=1\)时,\(\lfloor \frac {n}{y(x+y)} \rfloor\) 才会被算进去。
\(\mu(n)\)很容易就可以算出来,显然当\(n=1\)时\(\mu(1)=1\),对于一个数\(n\),它的所有约数的\(\mu()\)的和为\(0\),而\(n\)的其中一个约数就是\(n\),小于\(n\)的\(\mu()\)又已经算出来了,就可以把\(\mu(n)\)算出来。
\[\sum_{x < y} \mu(d) \lfloor \frac {n}{y(x+y)d^2} \rfloor (d \leq \sqrt{n})\]
设
\[f(t)=\sum_{x < y} \lfloor \frac {t}{y(x+y)} \rfloor\]
则
\[Ans=\sum_{x < y} \mu(d)f(\frac {n}{d^2})\]
\[f(t)=\sum_{x < y} \lfloor \frac {t}{y(x+y)} \rfloor\]
\[=\sum_{x < y, z \leq \lfloor \frac {t}{y(x+y)} \rfloor} 1\]
\[=\sum_{x \leq y-1, y(x+y) \leq \lfloor \frac {t}{z} \rfloor} 1\]
\[=\sum_{x \leq y-1, x \leq \lfloor \frac {t}{zy} \rfloor -y} 1\]
\[f(t)=\sum h(\lfloor \frac {t}{z} \rfloor)\]
终于都推完了。
答案记得乘2
分析一下时间复杂度。
\(h(s)\):因为最小值要比大于\(0\),所以\(y \leq \sqrt {s}\),而\(s=\lfloor \frac {t}{z} \rfloor=\lfloor \frac {n}{zd^2} \rfloor\),所以\(s\)最多有\(2\sqrt {n}\)个,时间复杂度为:
\[\int_{0}^{\sqrt {n}} (\sqrt {x} + \sqrt { \frac {n}{x}} ) \mathrm{d}x\]
\(f(s)\):分析同上,一个\(f(s)\)需要\(\sqrt {s}\)的时间
\(Ans\):枚举\(d\)要\(\sqrt {n}\),算\(f(s)\)需要\(\sqrt {s}\)的时间,总的时间复杂度为:
\[\int_{0}^{\sqrt {n}} (\sqrt {x} + \sqrt { \frac {n}{x}} ) \mathrm{d}x\]
预处理\(h(s)\),所以整个算法的时间为:
\[\int_{0}^{\sqrt {n}} (\sqrt {x} + \sqrt { \frac {n}{x}} ) \mathrm{d}x\]
\[=\frac {8}{3} n^{ \frac {3}{4}}\]
贴代码:
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <vector>
#include <map>
#include <deque>
#include <queue>
using namespace std;typedef long long LL;
const int maxn=int(1e6)+100;LL n, ans;
int qn;
LL u[maxn], h[maxn], hv[maxn];void getu()
{for (int i=1; i<=qn; ++i) u[i]=1;for (int i=2; i<=qn; ++i){u[i]=-u[i];for (int j=2; i*j<=qn; ++j) u[i*j]+=u[i];}
}
LL geth1(LL num)
{int cut=(sqrt(1+8*num)+1)*0.25;int fi=(int)floor(sqrt(num));LL ret=LL(cut-1)*cut/2-(LL)(cut+1+fi)*(fi-cut)/2;for (int i=cut+1; i<=fi; ++i)ret+=num/i;return ret;
}
void geth()
{for (int i=1; i<=qn; ++i){h[i]=geth1(i);hv[i]=geth1(n/i); }
}
LL getf(LL num)
{LL f=0;int fi=(int)floor(sqrt(num));for (int i=1; i<=fi; ++i)f+=h[i]*(num/i-num/(i+1));for (int i=1; i<=fi; ++i){if (num / i <= fi) continue;if (num/i>sqrt(n)) f+=hv[n/(num/i)];else f+=h[num/i];}/*if (LL(sqrt(num))*LL(sqrt(num))==num)f-=h[LL(sqrt(num))];*/return f;
}
void solve()
{getu();geth();for (int i=1; i<=qn; ++i)ans+=u[i]*getf(n/((long long)i*i));
}
int main()
{freopen("nixgnoygnay.in", "r", stdin);freopen("nixgnoygnay.out", "w", stdout);scanf("%I64d", &n);qn=(int)floor(sqrt(n));solve();printf("%I64d\n", ans*2);return 0;
}