YOLO v8目标跟踪详细解读(二)

上一篇,结合代码,我们详细的介绍了YOLOV8目标跟踪的Pipeline。大家应该对跟踪的流程有了大致的了解,下面我们将对跟踪中出现的卡尔曼滤波进行解读。
在这里插入图片描述

1.卡尔曼滤波器介绍

卡尔曼滤波(kalman Filtering)是一种利用线性系统状态方程,通过系统输入观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

卡尔曼滤波在测量方差已知的情况夏能够从一系列存在测量噪声的数据中,估计动态系统的状态。在目标跟踪中,将检测框的坐标看作观测数据,通过状态转移矩阵与状态协方差矩阵来更新下一帧的最优估计。

2.卡尔曼滤波器的基本概念

在这里插入图片描述
首先,我们需要了解卡尔曼滤波器的一些基本概念。 X k ^ \hat{X_k} Xk^表示k时可的状态量, F k F_k Fk表示 X k ^ \hat{X_k} Xk^的状态转移矩阵(运动估计矩阵)。我们可以利用 X k − 1 ^ \hat{X_{k-1}} Xk1^通过 F k F_k Fk获得k时刻的估计 X k ^ \hat{X_k} Xk^ P k P_k Pk作为状态协方差矩阵,也需要根据 F k F_k Fk更新。

在这里插入图片描述
在这里插入图片描述观测量与状态量可能存在两个不同的空间,因此需要 H k H_k Hk实现状态空间到观测空间的映射。由于传感器检测的观测量存在误差,我们可以把观测空间理解为高斯分布,而状态量本就是一种估计,相较于观测量,状态量可以理解为具有较大方差的高斯分布,其均值为状态量。
在这里插入图片描述如上图所示,状态量 X k − 1 ^ \hat{X_{k-1}} Xk1^是位于左侧的高斯分布,通过状态转移矩阵获得k时刻状态量 X k ^ \hat{X_k} Xk^,由于过程中存在各种误差,方差较大。红色部分是k时刻的观测量 y k y_k yk。由于无法预知 X k ^ \hat{X_k} Xk^ y k y_k yk两者哪边更为准确,我们将两者结合,得到的联合分布看作卡尔曼滤波最后更新的状态量。
在这里插入图片描述两个高斯分布的联合分布也是高斯分布已知两个高斯分布,其联合分布也为高斯分布,联合高斯分布的均值为 μ ^ ′ \hat{\mu}' μ^, Σ ^ ′ \hat{\Sigma}' Σ^

在这里插入图片描述
根据上图中简单的矩阵计算,我们得到卡尔曼滤波预测与更新5个重要公式。
预测: P k − 1 P_{k-1} Pk1, X k − 1 ^ \hat{X_{k-1}} Xk1^根据状态转移矩阵获得k时刻 P k ^ \hat{P_{k}} Pk^ X k ^ \hat{X_{k}} Xk^
更新:将状态量映射至观测量空间,联合观测量更新状态量 X k ^ ′ \hat{X_{k}}' Xk^,状态协方差矩阵 P k ′ {P_{k}}' Pk,本质是将观测量与状态量的高斯分布结合,形成的联合分布看作最终状态量的分布,其中 K ′ K' K称为卡尔曼增益。

3.卡尔曼滤波在目标跟踪的应用

在这里插入图片描述首先,状态量为[x,y,a,h,dx,dy,da,dh],我们需要预测坐标框下一帧的位置,所以状态转移矩阵很简单,表示为图中所示固定矩阵 F k F_k Fk。物理意义:下一时刻的位置=该时刻的位置+该时刻的速度× Δ \Delta Δt,这里 Δ \Delta Δt设为1。系统输入 u k u_k uk设为0。

为什么选用xyah作为状态量,而不是xyxy?主要考虑xyah作为4个独立变量,他们的协方差=0,因此协方差矩阵可以表示为对角矩阵。而xyxy形式,左上角坐标与右小角坐标有相关性,协方差矩阵不可表示为对角矩阵。
在这里插入图片描述
观测量为[x,y,a,h],因此映射矩阵 H k H_k Hk为图中所示固定矩阵。我们对KF进行初始化,self._motion_mat表示 F k F_k Fk状态转移矩阵,self._update_mat表示 H k H_k Hk映射矩阵, self._std_weight_position表示位置方差的权重,self._std_weight_velocity 表示速度方差的权重,赋值均为经验值。

def __init__(self):"""Initialize Kalman filter model matrices with motion and observation uncertainties."""ndim, dt = 4, 1.# Create Kalman filter model matrices.self._motion_mat = np.eye(2 * ndim, 2 * ndim)for i in range(ndim):self._motion_mat[i, ndim + i] = dtself._update_mat = np.eye(ndim, 2 * ndim)# Motion and observation uncertainty are chosen relative to the current# state estimate. These weights control the amount of uncertainty in# the model. This is a bit hacky.self._std_weight_position = 1. / 20self._std_weight_velocity = 1. / 160

将该帧未关联的检测框坐标作为新轨迹的状态量,同时将mean_vel初始化为0。 X k ^ \hat{X_k} Xk^=mean = np.r_[mean_pos, mean_vel]。 P k {P_k} Pk初始化,其中x,y,h, x ′ , y ′ , h ′ x',y',h' x,y,h的方差均与h为正比,a, a ′ a' a为宽高比,方差为常值1e-2,1e-5。因为xy为检测框中心点,它存在于图中任意点,作为方差没有意义,因此方差正比于h。

def initiate(self, measurement):"""Create track from unassociated measurement.Parameters----------measurement : ndarrayBounding box coordinates (x, y, a, h) with center position (x, y),aspect ratio a, and height h.Returns-------(ndarray, ndarray)Returns the mean vector (8 dimensional) and covariance matrix (8x8dimensional) of the new track. Unobserved velocities are initializedto 0 mean."""mean_pos = measurementmean_vel = np.zeros_like(mean_pos)mean = np.r_[mean_pos, mean_vel]std = [2 * self._std_weight_position * measurement[3], 2 * self._std_weight_position * measurement[3], 1e-2,2 * self._std_weight_position * measurement[3], 10 * self._std_weight_velocity * measurement[3],10 * self._std_weight_velocity * measurement[3], 1e-5, 10 * self._std_weight_velocity * measurement[3]]covariance = np.diag(np.square(std))return mean, covariance

在进行轨迹关联前,需要预测轨迹在该帧的状态量。上面我们已经讨论了卡尔曼滤波预测的公式,翻译成代码就如下所示,其中motion_cov表示不确定性干扰,通常为对角矩阵状态量相关,对位元素越大,其值越大。

def predict(self, mean, covariance):"""Run Kalman filter prediction step.Parameters----------mean : ndarrayThe 8 dimensional mean vector of the object state at the previoustime step.covariance : ndarrayThe 8x8 dimensional covariance matrix of the object state at theprevious time step.Returns-------(ndarray, ndarray)Returns the mean vector and covariance matrix of the predictedstate. Unobserved velocities are initialized to 0 mean."""std_pos = [self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-2,self._std_weight_position * mean[3]]std_vel = [self._std_weight_velocity * mean[3], self._std_weight_velocity * mean[3], 1e-5,self._std_weight_velocity * mean[3]]motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))# mean = np.dot(self._motion_mat, mean)mean = np.dot(mean, self._motion_mat.T)covariance = np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T)) + motion_covreturn mean, covariance

在更新状态量之前,需要将状态量以及状态协方差矩阵映射到观测量空间,公式如下所示。
在这里插入图片描述

def project(self, mean, covariance):"""Project state distribution to measurement space.Parameters----------mean : ndarrayThe state's mean vector (8 dimensional array).covariance : ndarrayThe state's covariance matrix (8x8 dimensional).Returns-------(ndarray, ndarray)Returns the projected mean and covariance matrix of the given stateestimate."""std = [self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-1,self._std_weight_position * mean[3]]innovation_cov = np.diag(np.square(std))mean = np.dot(self._update_mat, mean)covariance = np.linalg.multi_dot((self._update_mat, covariance, self._update_mat.T))return mean, covariance + innovation_cov

最后,结合观测量,构建联合高斯分布,更新状态量。
在这里插入图片描述

def update(self, mean, covariance, measurement):"""Run Kalman filter correction step.Parameters----------mean : ndarrayThe predicted state's mean vector (8 dimensional).covariance : ndarrayThe state's covariance matrix (8x8 dimensional).measurement : ndarrayThe 4 dimensional measurement vector (x, y, a, h), where (x, y)is the center position, a the aspect ratio, and h the height of thebounding box.Returns-------(ndarray, ndarray)Returns the measurement-corrected state distribution."""projected_mean, projected_cov = self.project(mean, covariance)chol_factor, lower = scipy.linalg.cho_factor(projected_cov, lower=True, check_finite=False)kalman_gain = scipy.linalg.cho_solve((chol_factor, lower),np.dot(covariance, self._update_mat.T).T,check_finite=False).Tinnovation = measurement - projected_meannew_mean = mean + np.dot(innovation, kalman_gain.T)new_covariance = covariance - np.linalg.multi_dot((kalman_gain, projected_cov, kalman_gain.T))return new_mean, new_covariance

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/37379.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

欧拉OS 使用 CentOS 7 yum repo

一、下载CentOS的repo的yum文件 任何基于CentOS的yum的repo 的url是这样的: 但欧拉OS输出这个变量为:openEuler 20.03 (LTS-SP3) 那明显欧拉想要使用这个yum的url找不到这个版本, 所以直接讲这个变量替换为 7, Centos 7的7 然后执行&…

从零实战SLAM-第七课(多视角几何)

在七月算法报的班,老师讲的蛮好。好记性不如烂笔头,关键内容还是记录一下吧,课程入口,感兴趣的同学可以学习一下。 --------------------------------------------------------------------------------------------------------…

设计模式--策略模式

目录 一.场景 1.1场景 2.2 何时使用 2.3个人理解 二. 业务场景练习 2.1业务: 2.2具体实现 2.3思路 三.总结 3.1策略模式的特点: 3.2策略模式优点 3.3策略模式缺点 一.场景 1.1场景 许多相关的类仅仅是行为有异,也就是说业务代码需要根据场景不…

归并排序 与 计数排序

目录 1.归并排序 1.1 递归实现归并排序: 1.2 非递归实现归并排序 1.3 归并排序的特性总结: 1.4 外部排序 2.计数排序 2.1 操作步骤: 2.2 计数排序的特性总结: 3. 7种常见比较排序比较 1.归并排序 基本思想: 归并排序(MERGE-SORT)是建立在归并操作上的一种…

redis分布式集群-redis+keepalived+ haproxy

redis分布式集群架构(RedisKeepalivedHaproxy)至少需要3台服务器、6个节点,一台服务器2个节点。 redis分布式集群架构中的每台服务器都使用六个端口来实现多路复用,最终实现主从热备、负载均衡、秒级切换的目标。 redis分布式集…

使用Edge和chrom扩展工具(GoFullPage)实现整页面截图或生成PDF文件

插件GoFullPage下载:点击免费下载 如果在浏览网页时,有需要整个页面截图或导出PDF文件的需求,这里分享一个Edge浏览器的扩展插件:GoFullPage。 这个工具可以一键实现页面从上到下滚动并截取。 一、打开“管理扩展”(…

网络设备(防火墙、路由器、交换机)日志分析监控

外围网络设备(如防火墙、路由器、交换机等)是关键组件,因为它们控制进出公司网络的流量。因此,监视这些设备的活动有助于 IT 管理员解决操作问题,并保护网络免受攻击者的攻击。通过收集和分析这些设备的日志来监控这些…

Python 3 使用Hadoop 3之MapReduce总结

MapReduce 运行原理 MapReduce简介 MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题。 MapReduce分成两个部分:Map(映射)和Reduce(归纳)。…

tauri-react:快速开发跨平台软件的架子,支持自定义头部和窗口阴影效果

tauri-react 一个使用 taurireacttsantd 开发跨平台软件的模板,支持窗口头部自定义和窗口阴影,不用再自己做适配了,拿来即用,非常 nice。 开原地址:GitHub - Sjj1024/tauri-react: 一个最基础的使用tauri和react开发…

生成式 AI 在泛娱乐行业的应用场景实践 – 助力风格化视频内容创作

感谢大家阅读《生成式 AI 行业解决方案指南》系列博客,全系列分为 4 篇,将为大家系统地介绍生成式 AI 解决方案指南及其在电商、游戏、泛娱乐行业中的典型场景及应用实践。目录如下: 《生成式 AI 行业解决方案指南与部署指南》《生成式 AI 在…

一个概率论例题引发的思考

浙江大学版《概率论与数理统计》一书,第13章第1节例2: 这个解释和模型比较简单易懂。 接下来,第13章第2节的例2也跟此模型相关: 在我自己的理解中,此题的解法跟上一个题目一样,其概率如下面的二维矩阵&a…

聊聊计算机技术

目录 1.计算机的概念 2.计算机的发展过程 3.计算机的作用 4.计算机给人类带来的福利 1.计算机的概念 计算机是一种用于处理和存储数据的电子设备。它能够执行各种操作,比如计算、逻辑操作、数据存储和检索等。计算机由硬件和软件两部分组成。 计算机的硬件包括中…

Go 语言并发编程 及 进阶与依赖管理

1.0 从并发编程本质了解Go高性能的本质 1.1 Goroutine 协程可以理解为轻量级线程; Go更适合高并发场景原因之一:Go语言一次可以创建上万协成; “快速”:开多个协成 打印。 go func(): 在函数前加 go 代表 创建协程; time.Sleep():…

基于深度信念网络的西储大学轴承故障分类识别,基于EMD+DBN的西储大学轴承故障识别,LCD+DBN,LMD+DBN

目录 背影 DBN神经网络的原理 DBN神经网络的定义 受限玻尔兹曼机(RBM) (EMD,LCD,LMD)+DBN的深度信念网络的西储大学轴承故障分类识别 基本结构 主要参数 数据 MATALB代码 结果图 展望 背影 DBN是一种深度学习神经网络,拥有提取特征,非监督学习的能力,是一种非常好的分类…

Nacos使用SpringCloudAlibaba+Dubbo实现

Nacos简介 Nacos是阿里的一个开源产品,它是针对微服务架构中的服务发现、服务治理、配置管理的综合型解决方案。 官方介绍是这样的: Nacos 致力于帮助您发现、配置和管理微服务。Nacos 提供了一组简单易用的特性集,帮助您实现动态服务发现、…

CSDN编程题-每日一练(2023-08-14)

CSDN编程题-每日一练(2023-08-14) 一、题目名称:小股炒股二、题目名称:王子闯闸门三、题目名称:圆小艺 一、题目名称:小股炒股 时间限制:1000ms内存限制:256M 题目描述: …

ISIS技术(第三十七课)

1 分享一下华为官网上的一张地图 官网地址:https://support.huawei.com/hedex/hdx.do?docid=EDOC1000105967&id=ZH-CN_CONCEPT_0000001501534705 2 路由的分类 -直连路由 直接连接的路由,且配置了IP地址之后(在同一网段内),就是直连路由。 -非直连路由 -静态路由…

2021年06月 C/C++(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

第1题:数字放大 给定一个整数序列以及放大倍数x,将序列中每个整数放大x倍后输出。 时间限制:1000 内存限制:65536 输入 包含三行: 第一行为N,表示整数序列的长度(N ≤ 100); 第二行为N个整数(不超过整型范围…

(css)点击前隐藏icon图表 点击后显示

(css)点击前隐藏icon图表 点击后显示 效果 html <liv-for"(item,index) in sessionList":key"index"class"liClass":class"{ active: change2 index }"tabindex"2">...<el-tooltip class"item" effec…

分布式监控平台——Zabbix

市场上常用的监控软件&#xff1a; 传统运维&#xff1a;zabbix、 Nagios 一、zabbix概述 作为一个运维&#xff0c;需要会使用监控系统查看服务器状态以及网站流量指标&#xff0c;利用监控系统的数据去了解上线发布的结果&#xff0c;和网站的健康状态。 利用一个优秀的监…