分布式唯一ID实战

目录

    • 一、UUID
    • 二、数据库方式
      • 1、数据库生成之简单方式
      • 2、数据库生成 - 多台机器和设置步长,解决性能问题
      • 3、Leaf-segment 方案实现
      • 4、双 buffer 优化
      • 5、Leaf高可用容灾
    • 三、基于Redis实现分布式ID
    • 四、雪花算法

一、UUID

UUID的标准形式包含32个16进制数字,以 “ - ” 进行分割,形式为 8-4-4-4-12的32个字符,实例
550e8400-e29b-41d4-a716-446655440000。

优点:
- 性能高,本地生成,没有网络消耗

缺点:
- 不易存储,长度太长,32个16进制数字,128位
- 不安全,会暴露MAC地址
- UUID作为MySQL主键,会导致索引页分页,插入慢;长度太长,导致每个索引页存放的索引变少,索引效率降低


二、数据库方式

1、数据库生成之简单方式

利用给字段设置auto_increment_increment和auto_increment_offset来保证ID自增,每次业务使用下列SQL读写MySQL得到ID号作为业务的唯一ID

begin;
// 如果表中存在相同的数据,则将表中的数据删除,然后重新插入一条数据
2 REPLACE INTO Tickets64 (stub) VALUES ('a');
3 SELECT LAST_INSERT_ID();
4 commit;

在这里插入图片描述

优点:

  • 非常简单,利用现有数据库系统的功能实现,成本小
  • ID单调递增,可以实现一些对ID有特殊要求的业务

缺点

  • 强依赖DB,当DB异常时,整个系统不可使用,属于致命问题。应该配置主从复制以尽可能增加可用性(但是主从切换时可能会导致重复发号)
  • ID发号,性能瓶颈限制在单台MySQL的读写性能

2、数据库生成 - 多台机器和设置步长,解决性能问题

在分布式系统中我们可以多部署几台机器,每台机器设置不同的初始值,且步长和机器数相等

比如有两台机器。设置步长step为2,TicketServer1的初始值为1(1,3,5,7,9,11…)、TicketServer2的初始值为2(2,4,6,8,10…)

假设我们要部署N台机器,步长需设置为N,每台的初始值依次为0,1,2…N-1那么整个架构就变成了如下图所示:
在这里插入图片描述

这种架构貌似能够满足性能的需求,但有以下几个缺点:

  • 系统水平扩展比较困难,比如定义好了步长和机器台数之后,如果要添加机器该怎么
    做?假设现在只有一台机器发号是1,2,3,4,5(步长是1),这个时候需要扩容机器一台。可
    以这样做:把第二台机器的初始值设置得比第一台超过很多,比如14(假设在扩容时间之
    内第一台不可能发到14),同时设置步长为2,那么这台机器下发的号码都是14以后的偶
    数。然后摘掉第一台,把ID值保留为奇数,比如7,然后修改第一台的步长为2。让它符合
    我们定义的号段标准,对于这个例子来说就是让第一台以后只能产生奇数。扩容方案看起来
    复杂吗?貌似还好,现在想象一下如果我们线上有100台机器,这个时候要扩容该怎么做?
    简直是噩梦。所以系统水平扩展方案复杂难以实现。

  • ID没有了单调递增的特性,只能趋势递增,这个缺点对于一般业务需求不是很重要,可以容忍

  • 数据库压力还是很大,每次获取ID都得读写一次数据库,只能靠堆机器来提高性能

3、Leaf-segment 方案实现

Leaf-segment方案,在使用数据库的方案上,做了如下改变:

  • 原方案每次获取ID都得读写一次数据库,造成数据库压力大
  • 改为利用批量获取,每次获取一个segment(step决定大小)号段的值。用完之后再去数据库获取新的号段,可以大大的减轻数据库的压力
  • 各个业务不同的发号需求用biz_tag字段来区分,每个biz-tag的ID获取相互隔离,互不影响。
    如果以后有性能需求需要对数据库扩容,不需要上述描述的复杂的扩容操作,只需要对biz_tag分库分表就行。

数据库表设计如下
在这里插入图片描述
重要字段说明:

  • biz_tag用来区分业务
  • max_id表示该biz_tag目前所被分配的ID号段的最大值
  • step表示每次分配的号段长度。原来获取ID每次都需要写数据库,现在只需要把step设置得足够大,比如1000。那么只有当1000个号被消耗完了之后才会去重新读写一次数据库。读写数据库的频率从1减小到了1/step

系统架构
在这里插入图片描述


优缺点:
优点:

  • 将分配ID的压力由数据库转移到web服务(Leaf), Leaf服务可以很方便的进行线程扩展,性能完全能够支撑大多数业务场景
  • 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务
  • 可以自定义max_id的大小,非常方便业务从原有的ID方式上迁移过来

缺点:

  • ID号码不够随机,能够泄露发号数量的信息,不太安全
  • TP999数据波动大(当一个号段的ID使用完全后,leaf服务去mysql取号段,在此过程中应用服务如果有很大的并发过来,就会导致没有ID进行分配,从而导致响应时间变长,出现尖刺)
  • DB宕机的话,整个系统不可使用

4、双 buffer 优化

对于第二个缺点(响应存在峰值),Leaf-segment做了一些优化,简单的说就是:

Leaf 取号段的时机是在号段消耗完的时候进行的,也就意味着号段临界点的ID下发时间取决于下一次从DB取回号段的时间,并且在这期间进来的请求也会因为DB号段没有取回来,导致线程阻塞。如果请求DB的网络和DB的性能稳定,这种情况对系统的影响是不大的,但是假如取DB的时候网络发生抖动,或者DB发生慢查询就会导致整个系统的响应时间变慢。

为此,我们希望DB取号段的过程能够做到无阻塞,不需要在DB取号段的时候阻塞请求线程,即当号段消费到某个点时就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做就可以很大程度上的降低系统的TP999指标。

在这里插入图片描述

采用双buffer的方式,Leaf服务内部有两个号段缓存区segment。当前号段已下发10%时,如果下一个号段未更新,则另启一个更新线程去更新下一个号段。当前号段全部下发完后,如果下个号段准备好了则切换到下个号段为当前segment接着下发,循环往复

每个biz-tag都有消费速度监控,通常推荐segment长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响



5、Leaf高可用容灾

对于第三点“DB可用性”问题,我们目前采用一主两从的方式,同时分机房部署,Master和Slave之间采用半同步方式同步数据

这里,我其实是没怎么听懂的 !即使使用了主从,在数据同步过程不是还会有ID重复吗

在这里插入图片描述



三、基于Redis实现分布式ID



四、雪花算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/37023.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Word 2019打开.doc文档后图片和公式不显示(呈现为白框)的解决办法

Word 2019打开.doc文档后图片和公式不显示(呈现为白框)的解决办法 目录 Word 2019打开.doc文档后图片和公式不显示(呈现为白框)的解决办法一、问题描述二、解决方法1.打开 WORD 2019,点击菜单中的“文件”;…

微服务05-Sentinel流量防卫兵

随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件,主要以 流量 为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。 S…

专注于创意设计,为您的小程序和网站建设带来更多的可能性

随着移动互联网的快速发展,越来越多的企业开始关注小程序和网站建设,以此来拓展业务和提升品牌形象。 在这个领域中,创意设计扮演着关键的角色。它不仅可以帮助企业打造独特的形象和品牌,还能够提高用户体验和购买决策的效率。 因…

Openlayers 实战 - 地图视野(View)- 图层 -(layer)- 资源(source)显示等级设置。

Openlayers 实战 - 地图视野(View)- 图层 -(layer)- 资源(source)显示等级设置。 问题原因核心代码完整代码:在线示例 在以往的项目维护中,出现一个问题,使用最新高清底图…

已有公司将ChatGPT集成到客服中心以增强用户体验

Ozonetel正在利用ChatGPT来改善客户体验。该公司表示,他们通过使用ChatGPT收集与客户互动过程收集的“语料”能够更有针对性地提高服务效率,提供个性化的用户体验,并实现更高的客户满意度。[1] 通过这套解决方案,客服中心将拥有一…

Struts2一次请求参数问题的记录

最近,一次前端正常请求,但后台出现请求参数值的变化,导致报错,问题如下: 从入参request中查看请求参数,是一个Json字符串,其中有个description的键值对; 但是,接下来调用…

【需求输出】用户故事方法

文章目录 1、初识用户故事2、用户故事是描述需求的最好方式3、创建用户故事4、用户故事的分层管理5、编写用户故事的工具 1、初识用户故事 2、用户故事是描述需求的最好方式 3、创建用户故事 4、用户故事的分层管理 5、编写用户故事的工具

软件测试基础之软件缺陷处理

一、什么是缺陷 不满足用户确定需求、影响软件功能实现的问题、故障 缺陷就是人们通常所说的bug。 ex.一下哪一种选项不属于软件缺陷___。 A.软件没有实现产品规格说明所要求的功能 B.软件中出现了产品规格说明不应该出现的功能 C.软件实现了产品规格说明没有提到的功能 D.软…

Python实现透明隧道爬虫ip:不影响现有网络结构

作为一名专业爬虫程序员,我们常常需要使用隧道代理来保护个人隐私和访问互联网资源。本文将分享如何使用Python实现透明隧道代理,以便在保护隐私的同时不影响现有网络结构。通过实际操作示例和专业的解析,我们将带您深入了解透明隧道代理的工…

Base64编码-算法特别的理解

Base64 在DES加密和AES加密的过程中,加密的编码会出现负数,在ascii码表中找不到对应的字符,就会出现乱码。为了解决乱码的问题,一般结合base64使用 所谓Base64,即是说在编码过程中使用了64种字符:大写A到Z、…

Azure资源命名和标记决策指南

参考 azure创建虚拟机在虚拟机中选择编辑标签,并添加标记,点击应用 3.到主页中转到所有资源 4. 添加筛选器并应用 5.查看结果,筛选根据给服务器定义的标签筛选出结果。 参考链接: https://learn.microsoft.com/zh-cn/azure/cloud-adoption…

在Java中操作Redis(详细-->从环境配置到代码实现)

在Java中操作Redis 文章目录 在Java中操作Redis1、介绍2、Jedis3、Spring Data Redis3.1、对String的操作3.2、对哈希类型数据的操作3.3、对list的操作3.4、对set类型的操作3.5、对 ZSet类型的数据(有序集合)3.6、通用类型的操作 1、介绍 Redis 的Java客…

基于Echarts的数据可视化大屏

本项目学习于b站up主(视频链接) up主分享的资料,gitee仓库: 其中有笔记,笔记链接 项目总结 项目主要分为前端页面的布局和Echarts图表的嵌入,页面主要就是css较为繁琐,图表毕竟官网有模板&…

数组slice、splice字符串substr、split

一、定义 这篇文章主要对数组操作的两种方法进行介绍和使用,包括:slice、splice。对字符串操作的两种方法进行介绍和使用,包括:substr、split (一)、数组 slice:可以操作的数据类型有:数组字符串 splice:数组 操作数组…

计算机网络-物理层(一)物理层的概念与传输媒体

计算机网络-物理层(一)物理层的概念与传输媒体 物理层相关概念 物理层的作用用来解决在各种传输媒体上传输比特0和1的问题,进而为数据链路层提供透明(看不见)传输比特流的服务物理层为数据链路层屏蔽了各种传输媒体的差异,使数据…

最新Kali Linux安装教程:从零开始打造网络安全之旅

Kali Linux,全称为Kali Linux Distribution,是一个操作系统(2013-03-13诞生),是一款基于Debian的Linux发行版,基于包含了约600个安全工具,省去了繁琐的安装、编译、配置、更新步骤,为所有工具运行提供了一个…

[低端局][cx32L003] 移植U8G2

文章目录 一、简介(1)U8g2(2)U8x8 二、配置要求三、移植步骤(1)文件准备和添加(2)实现回调接口(I2C的读写函数)①软件I2C②硬件I2C (3)功能裁剪① u8g2_d_set…

Python Selenium 设置带账号密码的socks5代理,启动浏览器

selenium添加带有账密的socks5代理 我们都知道在使用selenium开发爬虫的时候不可避免的会使用socks5高匿名代理。一般情况下我们使用方法如下(开发语言为python): from selenium import webdriver chrome_options webdriver.ChromeOptions() chrome_options.add_…

Java并发之ReentrantLock

AQS AQS(AbstractQueuedSynchronizer):抽象队列同步器,是一种用来构建锁和同步器的框架。在是JUC下一个重要的并发类,例如:ReentrantLock、Semaphore、CountDownLatch、LimitLatch等并发都是由AQS衍生出来…

React Native Expo项目,复制文本到剪切板

装包: npx expo install expo-clipboard import * as Clipboard from expo-clipboardconst handleCopy async (text) > {await Clipboard.setStringAsync(text)Toast.show(复制成功, {duration: 3000,position: Toast.positions.CENTER,})} 参考链接&#xff1a…