十道海量数据处理面试题与十个方法大总结

1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

方案1:可以估计每个文件安的大小为50G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。

s 遍历文件a,对每个url求取clip_image002,然后根据所取得的值将url分别存储到1000个小文件(记为clip_image004)中。这样每个小文件的大约为300M。

s 遍历文件b,采取和a相同的方式将url分别存储到1000各小文件(记为clip_image006)。这样处理后,所有可能相同的url都在对应的小文件(clip_image008)中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。

s 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。

2. 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。

方案1:

s 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为clip_image010)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。

s 找一台内存在2G左右的机器,依次对clip_image010[1]用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件(记为clip_image012)。

s 对clip_image012[1]这10个文件进行归并排序(内排序与外排序相结合)。

方案2:

一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。

方案3:

与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。

3. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

方案1:顺序读文件中,对于每个词x,取clip_image014,然后按照该值存到5000个小文件(记为clip_image016)中。这样每个文件大概是200k左右。如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,知道分解得到的小文件的大小都不超过1M。对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。

4. 海量日志数据,提取出某日访问百度次数最多的那个IP。

方案1:首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有clip_image018个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

5. 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。

方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存clip_image020内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。

方案2:也可采用上题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。

6. 海量数据分布在100台电脑中,想个办法高校统计出这批数据的TOP10。

方案1:

s 在每台电脑上求出TOP10,可以采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大。

s 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。

7. 怎么在海量数据中找出重复次数最多的一个?

方案1:先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。然后找出上一步求出的数据中重复次数最多的一个就是所求(具体参考前面的题)。

8. 上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。

方案1:上千万或上亿的数据,现在的机器的内存应该能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。然后就是取出前N个出现次数最多的数据了,可以用第6题提到的堆机制完成。

9. 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。请怎么设计和实现?

方案1:这题用trie树比较合适,hash_map也应该能行。

10. 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。

方案1:这题是考虑时间效率。用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度)。然后是找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(n*lg10)。所以总的时间复杂度,是O(n*le)与O(n*lg10)中较大的哪一个。

11. 一个文本文件,找出前10个经常出现的词,但这次文件比较长,说是上亿行或十亿行,总之无法一次读入内存,问最优解。

方案1:首先根据用hash并求模,将文件分解为多个小文件,对于单个文件利用上题的方法求出每个文件件中10个最常出现的词。然后再进行归并处理,找出最终的10个最常出现的词。

12. 100w个数中找出最大的100个数。

方案1:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。

方案2:采用快速排序的思想,每次分割之后只考虑比轴大的一部分,知道比轴大的一部分在比100多的时候,采用传统排序算法排序,取前100个。复杂度为O(100w*100)。

方案3:采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。依次循环,知道扫描了所有的元素。复杂度为O(100w*100)。

13. 寻找热门查询:

搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。

(1) 请描述你解决这个问题的思路;

(2) 请给出主要的处理流程,算法,以及算法的复杂度。

方案1:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。

14. 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到clip_image022个数中的中数?

方案1:先大体估计一下这些数的范围,比如这里假设这些数都是32位无符号整数(共有clip_image018[1]个)。我们把0到clip_image024的整数划分为N个范围段,每个段包含clip_image026个整数。比如,第一个段位0到clip_image028,第二段为clip_image026[1]clip_image030,…,第N个段为clip_image032clip_image024[1]。然后,扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。注意这个过程每个机器上存储的数应该是O(N)的。下面我们依次统计每个机器上数的个数,一次累加,直到找到第k个机器,在该机器上累加的数大于或等于clip_image034,而在第k-1个机器上的累加数小于clip_image034[1],并把这个数记为x。那么我们要找的中位数在第k个机器中,排在第clip_image036位。然后我们对第k个机器的数排序,并找出第clip_image036[1]个数,即为所求的中位数。复杂度是clip_image038的。

方案2:先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第clip_image034[2]个便是所求。复杂度是clip_image040的。

15. 最大间隙问题

给定n个实数clip_image042,求着n个实数在实轴上向量2个数之间的最大差值,要求线性的时间算法。

方案1:最先想到的方法就是先对这n个数据进行排序,然后一遍扫描即可确定相邻的最大间隙。但该方法不能满足线性时间的要求。故采取如下方法:

s 找到n个数据中最大和最小数据max和min。

s 用n-2个点等分区间[min, max],即将[min, max]等分为n-1个区间(前闭后开区间),将这些区间看作桶,编号为clip_image044,且桶clip_image046的上界和桶i+1的下届相同,即每个桶的大小相同。每个桶的大小为:clip_image048。实际上,这些桶的边界构成了一个等差数列(首项为min,公差为clip_image050),且认为将min放入第一个桶,将max放入第n-1个桶。

s 将n个数放入n-1个桶中:将每个元素clip_image052分配到某个桶(编号为index),其中clip_image054,并求出分到每个桶的最大最小数据。

s 最大间隙:除最大最小数据max和min以外的n-2个数据放入n-1个桶中,由抽屉原理可知至少有一个桶是空的,又因为每个桶的大小相同,所以最大间隙不会在同一桶中出现,一定是某个桶的上界和气候某个桶的下界之间隙,且该量筒之间的桶(即便好在该连个便好之间的桶)一定是空桶。也就是说,最大间隙在桶i的上界和桶j的下界之间产生clip_image056。一遍扫描即可完成。

16. 将多个集合合并成没有交集的集合:给定一个字符串的集合,格式如:clip_image058。要求将其中交集不为空的集合合并,要求合并完成的集合之间无交集,例如上例应输出clip_image060

(1) 请描述你解决这个问题的思路;

(2) 给出主要的处理流程,算法,以及算法的复杂度;

(3) 请描述可能的改进。

方案1:采用并查集。首先所有的字符串都在单独的并查集中。然后依扫描每个集合,顺序合并将两个相邻元素合并。例如,对于clip_image062,首先查看aaa和bbb是否在同一个并查集中,如果不在,那么把它们所在的并查集合并,然后再看bbb和ccc是否在同一个并查集中,如果不在,那么也把它们所在的并查集合并。接下来再扫描其他的集合,当所有的集合都扫描完了,并查集代表的集合便是所求。复杂度应该是O(NlgN)的。改进的话,首先可以记录每个节点的根结点,改进查询。合并的时候,可以把大的和小的进行合,这样也减少复杂度。

17. 最大子序列与最大子矩阵问题

数组的最大子序列问题:给定一个数组,其中元素有正,也有负,找出其中一个连续子序列,使和最大。

方案1:这个问题可以动态规划的思想解决。设clip_image064表示以第i个元素clip_image066结尾的最大子序列,那么显然clip_image068。基于这一点可以很快用代码实现。

最大子矩阵问题:给定一个矩阵(二维数组),其中数据有大有小,请找一个子矩阵,使得子矩阵的和最大,并输出这个和。

方案1:可以采用与最大子序列类似的思想来解决。如果我们确定了选择第i列和第j列之间的元素,那么在这个范围内,其实就是一个最大子序列问题。如何确定第i列和第j列可以词用暴搜的方法进行。代码详见我的博客。

转载于:https://www.cnblogs.com/diegodu/p/9218948.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/368381.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring集成文件轮询和测试

我最近实施了一个小项目,在该项目中,我们必须轮询文件夹中的新文件,然后在文件内容上触发服务流。 Spring Integration非常适合此要求,因为它带有一个通道适配器 ,该适配器可以扫描文件夹中的新文件,然后通…

Spark参数配置总结

转载于:https://www.cnblogs.com/lz3018/p/8128017.html

eclipse mysql生成实体类_Eclipse实现数据库反向生成实体类(pojo)-------(插件安装和实现步骤的说明)...

一、插件安装1.下载插件:http://jaist.dl.sourceforge.net/sourceforge/jboss/HibernateTools-3.2.4.Beta1-R200810311334.zip2.解压压缩包分别将其中的features和plugins放到Eclipse安装目录下对应的这2个文件里,重启Eclipse使其生效3.随便建个project&…

一些小技巧-重构

用box-shadow制造浮雕效果用box-shadow做简单的背景修饰长页面背景图不够用...... 01 用box-shadow制造浮雕效果 demo示例: src"http://demo.zhangruojun.com/static/demo/demo001/" frameborder"0" width"414" height"650&qu…

VM虚拟机显示不能铺满问题

关于使用虚拟机(VMware)时桌面显示不能铺满整个窗口时的设置操作: 步骤:虚拟机菜单下的:编辑-->首选项-->显示(如下图) 可以根据自己需求设置全屏下面的三个选项,确定后如果不…

Weex系列-项目工程

转载于:https://www.cnblogs.com/hacjy/p/8136460.html

MySQL索引效率对比_mysql下普通索引和唯一索引的效率对比

今天在我的虚拟机中布置了环境,测试抓图如下:抓的这几个都是第一次执行的,刷了几次后,取平均值,效率大致相同,而且如果在一个列上同时建唯一索引和普通索引的话,mysql会自动选择唯一索引。谷歌一…

spring以及json,fastjson和jackson

(一) RestController 以及 RequestBody spring的这两个注解都需要使用对应的 message-converters 实现 pojo到字符串的转换, 需要配置实现了 GenericHttpMessageConverter 接口的实现类GenericHttpMessageConverter 父接口为HttpMessageConve…

turtle 函数 方法_学python第十一节:turtle深入 了解

学python第十一节:深入分析turtleTurtle是一个直观有趣的图形绘制函数。这节课对turtle的以下几点进行补充:在蟒蛇绘制代码中提到过import 库引用保留字的函数,是补充python程序功能的方式,使用2种编写格式: 第一种引用…

intellij idea中解决java.lang.VerifyError: Expecting a stackmap frame at branch target的方法

【实习第三周,被生活逼成了全栈hhhh从开发写到测试】 报错如下: 经过查找各类资料博客,针对不同的情况有不同的解决办法:1. java源代码是用jdk1.6下开发的,后来环境上替换安装了jdk1.7编译运行。运行报错。我的错误不属…

ArrayList使用内存映射文件

介绍 内存中的计算由于负担得起的硬件而开始兴起,大多数数据保留在RAM中以满足延迟和吞吐量的目标,但是将数据保留在RAM中会增加垃圾收集器的开销,尤其是在您不预先分配的情况下。 因此,有效地我们需要一种无垃圾/无垃圾的方法来避…

JVM的内存区域划分(转载)

原文链接: http://www.cnblogs.com/dolphin0520/p/3613043.html JVM的内存区域划分 学过C语言的朋友都知道C编译器在划分内存区域的时候经常将管理的区域划分为数据段和代码段,数据段包括堆、栈以及静态数据区。那么在Java语言当中,内存又是如…

微抖动,繁忙的等待和绑定CPU

性能分析新机器 当我在新机器上工作时,我想了解它的局限性。 在这篇文章中,我将研究机器的抖动以及忙于等待本周末构建的新PC的影响。 机器的规格很有趣,但不是发布目的。 永远不要少: i7-3970X六核,运行频率为4.5 GH…

Python快速搭建HTTP服务器

<wiz_tmp_tag id"wiz-table-range-border" contenteditable"false" style"display: none;"> 来自为知笔记(Wiz)转载于:https://www.cnblogs.com/linux-wang/p/8142848.html

再见了古诺。 你好Drools工作台。

Drools 6.0发生了许多变化。 随着功能和功能的变化&#xff0c;我们对Guvnor github存储库进行了重组&#xff0c;以更好地反映我们的新架构。 历史上&#xff0c;Guvnor一直是Drools的Web应用程序。 它由Drools专用的编辑器&#xff0c;后端存储库和简化的资产管理系统组成。 …

接口聚合

1.设置pc ip 192.168.1.1 192.168.1.2 2.设置端口聚合&#xff08;两个交换机设置相同&#xff09; Switch(config)#inter range f 0/1-3 Switch(config-if-range)#channel-g 1 mode act Switch(config-if-range)#sw mode trunk Switch(config-if-range)#sw trunk allow vlan …

JAVA 框架-Spring

一.准备工作 1.下载spring工具插件&#xff0c;在STS官网找到与eclipse对应版本的下载链接地址&#xff0c;复制该地址打开eclipse里的Help菜单&#xff0c;选择Install new Software选项&#xff0c;将地址粘贴到work with输入框中&#xff0c;点击add按钮&#xff0c;此时Loc…

HTML中三种定位relative,absolute,fixed后,盒子的百分比宽度及位置易错点

1 . 相对定位relative:顾名思义,相对定位是相对于自己的位置来进行偏移,如下图: 以盒子中心为基准,为每条边的正方向,例: 向右移动20px :  代码为left:20px;或者right:-20px; 向下移动20px : 代码为top:20px;或者bottom:-20px; 2 . 绝对定位:absolute 以其第一个定位的…

JMeter定制功能实现

JMeter提供了可在采样器中使用的功能。 在编写复杂的测试计划时&#xff0c;您会感到JMeter缺少某些方法。 您使用Beanshell脚本定义自己的自定义方法。 JMeter调用Beanshell解释器来运行脚本。 只要您不产生高负载&#xff08;大量线程&#xff09;&#xff0c;此方法就可以正…

vue安装

1、查看版本 npm -v cnpm -v 升级 npm cnpm install npm -g 2、cnpm install vue 3、全局安装 vue-cli cnpm install --global vue-cli 4、创建一个基于webpack模板的新项目 vue init webpack my-project 5、运行项目 cd my-project cnpm install cnpm run dev 6、报错 解决办…