前言:
Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理, 如果你的业务场景中需要用到异步任务,就可以考虑使用celery, 举几个实例场景中可用的例子:
- 你想对100台机器执行一条批量命令,可能会花很长时间 ,但你不想让你的程序等着结果返回,而是给你返回 一个任务ID,你过一段时间只需要拿着这个任务id就可以拿到任务执行结果, 在任务执行ing进行时,你可以继续做其它的事情。
- 你想做一个定时任务,比如每天检测一下你们所有客户的资料,如果发现今天 是客户的生日,就给他发个短信祝福
Celery有以下优点:
- 简单:一单熟悉了celery的工作流程后,配置和使用还是比较简单的
- 高可用:当任务执行失败或执行过程中发生连接中断,celery 会自动尝试重新执行任务
- 快速:一个单进程的celery每分钟可处理上百万个任务
- 灵活: 几乎celery的各个组件都可以被扩展及自定制
Celery基本工作流程图:
1、 Celery安装使用
Celery需要在linux的环境下运行:
1 2 3 4 5 6 | # 安装 [root@localhost celerys] # pip3 install celery # 进入python import无异常表示安装成功 [root@localhost celerys] # python3 >>> import celery |
Celery的默认broker是RabbitMQ, 仅需配置一行就可以
1 | broker_url = 'amqp://guest:guest@localhost:5672//' |
使用Redis做broker也可以
1 2 | broker_url = 'redis://localhost:6379/0' #redis://:password@hostname:port/db_number |
2、简单使用
创建一个任务文件就叫tasks.py:
1 2 3 4 5 6 7 8 9 10 11 12 | from celery import Celery import time app = Celery( 'cly' , # 任意 broker = 'redis://192.168.1.166:6379/0' , # 中间件 backend = 'redis://localhost' ) # 数据存储 @app .task def add(x,y): time.sleep( 10 ) print ( "running..." ,x,y) return x + y |
启动Celery Worker来开始监听并执行任务:
1 2 3 4 5 | # 加入环境变量 [root@localhost ~] # PATH=$PATH:/usr/local/python3.5/bin/ # 启动一个worker [root@localhost celerys] # celery -A tasks worker --loglevel=info |
调用任务:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | [root@localhost celerys] # python3 Python 3.5 . 2 (default, Jul 7 2017 , 23 : 36 : 01 ) [GCC 4.8 . 5 20150623 (Red Hat 4.8 . 5 - 11 )] on linux Type "help" , "copyright" , "credits" or "license" for more information. >>> from tasks import add # import add >>> add.delay( 4 , 6 ) # 执行函数 <AsyncResult: 4b5a8ab6 - 693c - 4ce5 - b779 - 305cfcdf70cd > # 返回taskid >>> result = add.delay( 4 , 6 ) # 执行函数 >>> result.get() # 同步获取结果,一直等待 10 >>> result.get(timeout = 1 ) # 设置超时时间,过期错误异常 Traceback (most recent call last): - - strip - - celery.exceptions.TimeoutError: The operation timed out. >>> result = add.delay( 4 , 'a' ) # 执行错误命令 >>> result.get() # get后获取到错误信息,触发异常 Traceback (most recent call last): - - strip - - celery.backends.base.TypeError: unsupported operand type (s) for + : 'int' and 'str' >>> result = add.delay( 4 , 'a' ) >>> result.get(propagate = False ) # propagate=False 不触发异常,获取错误信息 TypeError( "unsupported operand type(s) for +: 'int' and 'str'" ,) >>> result.traceback # 获取具体错误信息 log打印用 'Traceback (most recent call last):\n File "/usr/local/python3.5/lib/python3.5/site-packages/celery/app/trace.py", line 367, in trace_task\n R = retval = fun(*args, **kwargs)\n File "/usr/local/python3.5/lib/python3.5/site-packages/celery/app/trace.py", line 622, in __protected_call__\n return self.run(*args, **kwargs)\n File "/data/celerys/tasks.py", line 12, in add\n return x+y\nTypeError: unsupported operand type(s) for +: \'int\' and \'str\'\n' |
此时worker端收到的信息:
1 2 3 4 | [ 2017 - 07 - 08 03 : 12 : 22 , 565 : WARNING / PoolWorker - 1 ] running... # 获取到任务 [ 2017 - 07 - 08 03 : 12 : 22 , 565 : WARNING / PoolWorker - 1 ] 4 [ 2017 - 07 - 08 03 : 12 : 22 , 565 : WARNING / PoolWorker - 1 ] 6 # 任务执行完毕数据存储到backend端 [ 2017 - 07 - 08 03 : 12 : 22 , 567 : INFO / PoolWorker - 1 ] Task tasks.add[ 683e395e - 48b9 - 4d32 - b3bb - 1492c62af393 ] succeeded in 10.01260852499945s : 10 |
查看broker(即192.168.1.166)端数据:
1 2 3 4 5 6 | [root@localhost redis - 3.0 . 6 ] # src/redis-cli 127.0 . 0.1 : 6379 > keys * 1 ) "_kombu.binding.celeryev" 2 ) "unacked_mutex" 3 ) "_kombu.binding.celery.pidbox" 4 ) "_kombu.binding.celery" |
执行完后,backend端的数据:
1 2 3 | [root@localhost redis - 3.0 . 6 ] # src/redis-cli # 程序get后,数据未被删除 127.0 . 0.1 : 6379 > keys * 1 ) "celery-task-meta-683e395e-48b9-4d32-b3bb-1492c62af393" |