Flume:使用Apache Flume收集客户产品搜索点击数据

这篇文章涵盖了使用Apache flume收集客户产品搜索点击并使用hadoop和elasticsearch接收器存储信息。 数据可能包含不同的产品搜索事件,例如基于不同方面的过滤,排序信息,分页信息,以及进一步查看的产品以及某些被客户标记为喜欢的产品。 在以后的文章中,我们将进一步分析数据,以使用相同的信息进行显示和分析。

产品搜索功能

任何电子商务平台都可以为客户提供不同的产品,而搜索功能是其基础之一。 允许用户使用不同的构面/过滤器进行引导导航,或使用自由文本搜索内容,这与任何现有搜索功能无关紧要。

SearchQueryInstruction

考虑类似的情况,客户可以搜索产品,并允许我们使用以下信息来捕获产品搜索行为,

public class SearchQueryInstruction implements Serializable {@JsonIgnoreprivate final String _eventIdSuffix;private String eventId;private String hostedMachineName;private String pageUrl;private Long customerId;private String sessionId;private String queryString;private String sortOrder;private Long pageNumber;private Long totalHits;private Long hitsShown;private final Long createdTimeStampInMillis;private String clickedDocId;private Boolean favourite;@JsonIgnoreprivate Map<String, Set<String>> filters;@JsonProperty(value = "filters")private List<FacetFilter> _filters;public SearchQueryInstruction() {_eventIdSuffix = UUID.randomUUID().toString();createdTimeStampInMillis = new Date().getTime();}......private static class FacetFilter implements Serializable {private String code;private String value;public FacetFilter(String code, String value) {this.code = code;this.value = value;}......}
}

有关更多源信息,请访问SearchQueryInstruction 。 数据以JSON格式序列化,以便能够直接与ElasticSearch结合使用以进一步显示。

示例数据,基于用户点击的点击信息的外观。 数据先转换为json格式,然后再发送给嵌入式水槽代理。

{"eventid":"629e9b5f-ff4a-4168-8664-6c8df8214aa7-1399386809805-24","hostedmachinename":"192.168.182.1330","pageurl":"http://jaibigdata.com/5","customerid":24,"sessionid":"648a011d-570e-48ef-bccc-84129c9fa400","querystring":null,"sortorder":"desc","pagenumber":3,"totalhits":28,"hitsshown":7,"createdtimestampinmillis":1399386809805,"clickeddocid":"41","favourite":null,"eventidsuffix":"629e9b5f-ff4a-4168-8664-6c8df8214aa7","filters":[{"code":"searchfacettype_color_level_2","value":"Blue"},{"code":"searchfacettype_age_level_2","value":"12-18 years"}]}
{"eventid":"648b5cf7-7ca9-4664-915d-23b0d45facc4-1399386809782-298","hostedmachinename":"192.168.182.1333","pageurl":"http://jaibigdata.com/4","customerid":298,"sessionid":"7bf042ea-526a-4633-84cd-55e0984ea2cb","querystring":"queryString48","sortorder":"desc","pagenumber":0,"totalhits":29,"hitsshown":19,"createdtimestampinmillis":1399386809782,"clickeddocid":"9","favourite":null,"eventidsuffix":"648b5cf7-7ca9-4664-915d-23b0d45facc4","filters":[{"code":"searchfacettype_color_level_2","value":"Green"}]}
{"eventid":"74bb7cfe-5f8c-4996-9700-0c387249a134-1399386809799-440","hostedmachinename":"192.168.182.1330","pageurl":"http://jaibigdata.com/1","customerid":440,"sessionid":"940c9a0f-a9b2-4f1d-b114-511ac11bf2bb","querystring":"queryString16","sortorder":"asc","pagenumber":3,"totalhits":5,"hitsshown":32,"createdtimestampinmillis":1399386809799,"clickeddocid":null,"favourite":null,"eventidsuffix":"74bb7cfe-5f8c-4996-9700-0c387249a134","filters":[{"code":"searchfacettype_brand_level_2","value":"Apple"}]}
{"eventid":"9da05913-84b1-4a74-89ed-5b6ec6389cce-1399386809828-143","hostedmachinename":"192.168.182.1332","pageurl":"http://jaibigdata.com/1","customerid":143,"sessionid":"08a4a36f-2535-4b0e-b86a-cf180202829b","querystring":null,"sortorder":"desc","pagenumber":0,"totalhits":21,"hitsshown":34,"createdtimestampinmillis":1399386809828,"clickeddocid":"38","favourite":true,"eventidsuffix":"9da05913-84b1-4a74-89ed-5b6ec6389cce","filters":[{"code":"searchfacettype_color_level_2","value":"Blue"},{"code":"product_price_range","value":"10.0 - 20.0"}]}

阿帕奇水槽

Apache Flume用于收集和聚合数据。 此处,嵌入式Flume代理用于捕获搜索查询指令事件。 根据实际使用情况,

  • 您可以使用嵌入式代理来收集数据
  • 或通过rest api将数据从页面推送到专用于事件收集的后端api服务
  • 或者,您可以使用应用程序日志记录功能来记录所有搜索事件,并在日志文件的末尾收集数据

考虑一个取决于应用程序的场景,多个Web /应用程序服务器将事件数据发送到收集器水槽代理。 如下图所示,搜索点击事件是从多个Web /应用服务器和一个收集器/合并器代理收集的,以从所有代理收集数据。 数据基于选择器使用多路复用策略进一步划分,以存储在Hadoop HDFS中,并且还将相关数据定向到ElasticSearch。 最近浏览过的商品。

水槽数据流代理接收器

嵌入式Flume代理

嵌入式Flume Agent允许我们在应用程序本身中包含Flume代理,并允许我们收集数据并进一步发送给收集器代理。

private static EmbeddedAgent agent;private void createAgent() {final Map<String, String> properties = new HashMap<String, String>();properties.put("channel.type", "memory");properties.put("channel.capacity", "100000");properties.put("channel.transactionCapacity", "1000");properties.put("sinks", "sink1");properties.put("sink1.type", "avro");properties.put("sink1.hostname", "localhost");properties.put("sink1.port", "44444");properties.put("processor.type", "default");try {agent = new EmbeddedAgent("searchqueryagent");agent.configure(properties);agent.start();} catch (final Exception ex) {LOG.error("Error creating agent!", ex);}}

存储搜索事件数据

Flume提供了多个接收器选项来存储数据以供将来分析。 如图所示,我们将采用将数据存储在Apache Hadoop和ElasticSearch中的方案,以实现最近查看的项目功能。

Hadoop接收器

允许将数据永久存储到HDFS,以便以后进行分析以进行分析。
根据传入的事件数据,假设我们要每小时存储一次。 “ / searchevents / 2014/05/15/16”目录将存储16小时内的所有传入事件。

private HDFSEventSink sink;sink = new HDFSEventSink();sink.setName("HDFSEventSink-" + UUID.randomUUID());channel = new MemoryChannel();Map<String, String> channelParamters = new HashMap<>();channelParamters.put("capacity", "100000");channelParamters.put("transactionCapacity", "1000");Context channelContext = new Context(channelParamters);Configurables.configure(channel, channelContext);channel.setName("HDFSEventSinkChannel-" + UUID.randomUUID());Map<String, String> paramters = new HashMap<>();paramters.put("hdfs.type", "hdfs");String hdfsBasePath = hadoopClusterService.getHDFSUri()+ "/searchevents";paramters.put("hdfs.path", hdfsBasePath + "/%Y/%m/%d/%H");paramters.put("hdfs.filePrefix", "searchevents");paramters.put("hdfs.fileType", "DataStream");paramters.put("hdfs.rollInterval", "0");paramters.put("hdfs.rollSize", "0");paramters.put("hdfs.idleTimeout", "1");paramters.put("hdfs.rollCount", "0");paramters.put("hdfs.batchSize", "1000");paramters.put("hdfs.useLocalTimeStamp", "true");Context sinkContext = new Context(paramters);sink.configure(sinkContext);sink.setChannel(channel);sink.start();channel.start();

检查FlumeHDFSSinkServiceImpl.java以获取有关hdfs接收器的详细启动/停止信息。

下面的示例数据存储在hadoop中,

Check:hdfs://localhost.localdomain:54321/searchevents/2014/05/06/16/searchevents.1399386809864
body is:{"eventid":"e8470a00-c869-4a90-89f2-f550522f8f52-1399386809212-72","hostedmachinename":"192.168.182.1334","pageurl":"http://jaibigdata.com/0","customerid":72,"sessionid":"7871a55c-a950-4394-bf5f-d2179a553575","querystring":null,"sortorder":"desc","pagenumber":0,"totalhits":8,"hitsshown":44,"createdtimestampinmillis":1399386809212,"clickeddocid":"23","favourite":null,"eventidsuffix":"e8470a00-c869-4a90-89f2-f550522f8f52","filters":[{"code":"searchfacettype_brand_level_2","value":"Apple"},{"code":"searchfacettype_color_level_2","value":"Blue"}]}
body is:{"eventid":"2a4c1e1b-d2c9-4fe2-b38d-9b7d32feb4e0-1399386809743-61","hostedmachinename":"192.168.182.1330","pageurl":"http://jaibigdata.com/0","customerid":61,"sessionid":"78286f6d-cc1e-489c-85ce-a7de8419d628","querystring":"queryString59","sortorder":"asc","pagenumber":3,"totalhits":32,"hitsshown":9,"createdtimestampinmillis":1399386809743,"clickeddocid":null,"favourite":null,"eventidsuffix":"2a4c1e1b-d2c9-4fe2-b38d-9b7d32feb4e0","filters":[{"code":"searchfacettype_age_level_2","value":"0-12 years"}]}

ElasticSearch接收器

出于查看目的,向最终用户显示最近查看的项目。 ElasticSearch Sink允许自动创建每日最近查看的项目。 该功能可用于显示客户最近查看的项目。
假设您已经有ES实例在localhost / 9310上运行。

private ElasticSearchSink sink;sink = new ElasticSearchSink();sink.setName("ElasticSearchSink-" + UUID.randomUUID());channel = new MemoryChannel();Map<String, String> channelParamters = new HashMap<>();channelParamters.put("capacity", "100000");channelParamters.put("transactionCapacity", "1000");Context channelContext = new Context(channelParamters);Configurables.configure(channel, channelContext);channel.setName("ElasticSearchSinkChannel-" + UUID.randomUUID());Map<String, String> paramters = new HashMap<>();paramters.put(ElasticSearchSinkConstants.HOSTNAMES, "127.0.0.1:9310");String indexNamePrefix = "recentlyviewed";paramters.put(ElasticSearchSinkConstants.INDEX_NAME, indexNamePrefix);paramters.put(ElasticSearchSinkConstants.INDEX_TYPE, "clickevent");paramters.put(ElasticSearchSinkConstants.CLUSTER_NAME,"jai-testclusterName");paramters.put(ElasticSearchSinkConstants.BATCH_SIZE, "10");paramters.put(ElasticSearchSinkConstants.SERIALIZER,ElasticSearchJsonBodyEventSerializer.class.getName());Context sinkContext = new Context(paramters);sink.configure(sinkContext);sink.setChannel(channel);sink.start();channel.start();

检查FlumeESSinkServiceImpl.java以获得启动/停止ElasticSearch接收器的详细信息。

elasticsearch中的样本数据存储为

{timestamp=1399386809743, body={pageurl=http://jaibigdata.com/0, querystring=queryString59, pagenumber=3, hitsshown=9, hostedmachinename=192.168.182.1330, createdtimestampinmillis=1399386809743, sessionid=78286f6d-cc1e-489c-85ce-a7de8419d628, eventid=2a4c1e1b-d2c9-4fe2-b38d-9b7d32feb4e0-1399386809743-61, totalhits=32, clickeddocid=null, customerid=61, sortorder=asc, favourite=null, eventidsuffix=2a4c1e1b-d2c9-4fe2-b38d-9b7d32feb4e0, filters=[{value=0-12 years, code=searchfacettype_age_level_2}]}, eventId=2a4c1e1b-d2c9-4fe2-b38d-9b7d32feb4e0}
{timestamp=1399386809757, body={pageurl=http://jaibigdata.com/1, querystring=null, pagenumber=1, hitsshown=34, hostedmachinename=192.168.182.1330, createdtimestampinmillis=1399386809757, sessionid=e6a3fd51-fe07-4e21-8574-ce5ab8bfbd68, eventid=fe5279b7-0bce-4e2b-ad15-8b94107aa792-1399386809757-134, totalhits=9, clickeddocid=22, customerid=134, sortorder=desc, favourite=null, eventidsuffix=fe5279b7-0bce-4e2b-ad15-8b94107aa792, filters=[{value=Blue, code=searchfacettype_color_level_2}]}, State=VIEWED, eventId=fe5279b7-0bce-4e2b-ad15-8b94107aa792}
{timestamp=1399386809765, body={pageurl=http://jaibigdata.com/0, querystring=null, pagenumber=4, hitsshown=2, hostedmachinename=192.168.182.1331, createdtimestampinmillis=1399386809765, sessionid=29864de8-5708-40ab-a78b-4fae55698b01, eventid=886e9a28-4c8c-4e8c-a866-e86f685ecc54-1399386809765-317, totalhits=2, clickeddocid=null, customerid=317, sortorder=asc, favourite=null, eventidsuffix=886e9a28-4c8c-4e8c-a866-e86f685ecc54, filters=[{value=0-12 years, code=searchfacettype_age_level_2}, {value=0.0 - 10.0, code=product_price_range}]}, eventId=886e9a28-4c8c-4e8c-a866-e86f685ecc54}

ElasticSearchJsonBodyEventSerializer

控制如何在ElasticSearch中建立数据索引。 根据您的策略更新事件Seaalalizer,以查看应如何为数据建立索引。

public class ElasticSearchJsonBodyEventSerializer implements ElasticSearchEventSerializer {@Overridepublic BytesStream getContentBuilder(final Event event) throws IOException {final XContentBuilder builder = jsonBuilder().startObject();appendBody(builder, event);appendHeaders(builder, event);return builder;}......
}

检查ElasticSearchJsonBodyEventSerializer.java以配置序列化器以索引数据。

让我们以Java为例创建Flume源,以在测试用例中处理上述SearchQueryInstruction并存储数据。

带通道选择器的Avro Source

为了进行测试,让我们创建Avro源,以基于水槽多路复用功能将数据重定向到相关的接收器。

//Avro source to start at below port and process incoming data.private AvroSource avroSource;final Map<String, String> properties = new HashMap<String, String>();properties.put("type", "avro");properties.put("bind", "localhost");properties.put("port", "44444");avroSource = new AvroSource();avroSource.setName("AvroSource-" + UUID.randomUUID());Context sourceContext = new Context(properties);avroSource.configure(sourceContext);ChannelSelector selector = new MultiplexingChannelSelector();//Channels from above servicesChannel ESChannel = flumeESSinkService.getChannel();Channel HDFSChannel = flumeHDFSSinkService.getChannel();List<Channel> channels = new ArrayList<>();channels.add(ESChannel);channels.add(HDFSChannel);selector.setChannels(channels);final Map<String, String> selectorProperties = new HashMap<String, String>();selectorProperties.put("type", "multiplexing");selectorProperties.put("header", "State");selectorProperties.put("mapping.VIEWED", HDFSChannel.getName() + " "+ ESChannel.getName());selectorProperties.put("mapping.FAVOURITE", HDFSChannel.getName() + " "+ ESChannel.getName());selectorProperties.put("default", HDFSChannel.getName());Context selectorContext = new Context(selectorProperties);selector.configure(selectorContext);ChannelProcessor cp = new ChannelProcessor(selector);avroSource.setChannelProcessor(cp);avroSource.start();

检查FlumeAgentServiceImpl.java,将数据直接存储到上面配置的接收器,甚至将所有数据记录到日志文件中。

独立Flume / Hadoop / ElasticSearch环境

该应用程序可用于生成SearchQueryInstruction数据,并且您可以使用自己的独立环境进一步处理数据。 如果您已经在运行Flume / Hadoop / ElasticSearch环境,请使用以下设置进一步处理数据。

如果您已经在运行Flume实例,也可以使用以下配置(flume.conf),

# Name the components on this agent
searcheventscollectoragent.sources = eventsavrosource
searcheventscollectoragent.sinks = hdfssink essink
searcheventscollectoragent.channels = hdfschannel eschannel# Bind the source and sink to the channel
searcheventscollectoragent.sources.eventsavrosource.channels = hdfschannel eschannel
searcheventscollectoragent.sinks.hdfssink.channel = hdfschannel
searcheventscollectoragent.sinks.essink.channel = eschannel#Avro source. This is where data will send data to.
searcheventscollectoragent.sources.eventsavrosource.type = avro
searcheventscollectoragent.sources.eventsavrosource.bind = 0.0.0.0
searcheventscollectoragent.sources.eventsavrosource.port = 44444
searcheventscollectoragent.sources.eventsavrosource.selector.type = multiplexing
searcheventscollectoragent.sources.eventsavrosource.selector.header = State
searcheventscollectoragent.sources.eventsavrosource.selector.mapping.VIEWED = hdfschannel eschannel
searcheventscollectoragent.sources.eventsavrosource.selector.mapping.default = hdfschannel# Use a channel which buffers events in memory. This will keep all incoming stuff in memory. You may change this to file etc. in case of too much data coming and memory an issue.
searcheventscollectoragent.channels.hdfschannel.type = memory
searcheventscollectoragent.channels.hdfschannel.capacity = 100000
searcheventscollectoragent.channels.hdfschannel.transactionCapacity = 1000searcheventscollectoragent.channels.eschannel.type = memory
searcheventscollectoragent.channels.eschannel.capacity = 100000
searcheventscollectoragent.channels.eschannel.transactionCapacity = 1000#HDFS sink. Store events directly to hadoop file system.
searcheventscollectoragent.sinks.hdfssink.type = hdfs
searcheventscollectoragent.sinks.hdfssink.hdfs.path = hdfs://localhost.localdomain:54321/searchevents/%Y/%m/%d/%H
searcheventscollectoragent.sinks.hdfssink.hdfs.filePrefix = searchevents
searcheventscollectoragent.sinks.hdfssink.hdfs.fileType = DataStream
searcheventscollectoragent.sinks.hdfssink.hdfs.rollInterval = 0
searcheventscollectoragent.sinks.hdfssink.hdfs.rollSize = 134217728
searcheventscollectoragent.sinks.hdfssink.hdfs.idleTimeout = 60
searcheventscollectoragent.sinks.hdfssink.hdfs.rollCount = 0
searcheventscollectoragent.sinks.hdfssink.hdfs.batchSize = 10
searcheventscollectoragent.sinks.hdfssink.hdfs.useLocalTimeStamp = true#Elastic search
searcheventscollectoragent.sinks.essink.type = elasticsearch
searcheventscollectoragent.sinks.essink.hostNames = 127.0.0.1:9310
searcheventscollectoragent.sinks.essink.indexName = recentlyviewed
searcheventscollectoragent.sinks.essink.indexType = clickevent
searcheventscollectoragent.sinks.essink.clusterName = jai-testclusterName
searcheventscollectoragent.sinks.essink.batchSize = 10
searcheventscollectoragent.sinks.essink.ttl = 5
searcheventscollectoragent.sinks.essink.serializer = org.jai.flume.sinks.elasticsearch.serializer.ElasticSearchJsonBodyEventSerializer

要测试应用程序搜索查询指令在现有hadoop实例上的行为,请分别设置hadoop和elasticsearch实例。 该应用程序使用Cloudera hadoop distribution 5.0进行测试。

在后面的文章中,我们将介绍进一步分析生成的数据,

  • 使用Hive可以查询数据,以查询最热门的客户和产品浏览的次数。
  • 使用ElasticSearch Hadoop为客户热门查询和产品视图数据编制索引
  • 使用Pig来计算唯一客户总数
  • 使用Oozie计划针对配置单元分区进行协调的作业,并将作业捆绑以将数据索引到ElasticSearch。

翻译自: https://www.javacodegeeks.com/2014/05/flume-gathering-customer-product-search-clicks-data-using-apache-flume.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/363511.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue-cli使用swiper4在ie以及safari报错

vue-cli项目中&#xff0c;通过npm run swiper --save-dev安装的是swiper4版本的插件&#xff0c;这样安装以后在谷歌火狐等浏览器都可以正常运行&#xff0c;但是在safari浏览器&#xff08;可能是版本太低&#xff09;还有ie&#xff08;9,10,11&#xff09;打开会报错&#…

express框架

Express 是一个简洁而灵活的 node.js Web应用框架, 提供了一系列强大特性帮助你创建各种 Web 应用&#xff0c;和丰富的 HTTP 工具。使用 Express 可以快速地搭建一个完整功能的网站。 Express 框架核心特性&#xff1a; 可以设置中间件来响应 HTTP 请求。 定义了路由表用于执…

电脑内部,小贴士:电脑内部连接标准

小贴士&#xff1a;电脑内部连接标准在介绍电脑内部连接标准之前&#xff0c;首先应该了解一下电脑内部接线的种类&#xff0c;以便分类处置。电脑内部尽管五颜六色的导线&#xff0c;其中导线的种类可以分为3 类&#xff0c;即电源线、信号线和控制线&#xff0c;而控制线又常…

window media player出现内部应用程序错误

相信很多人都会遇到过window media player出现“内部应用程序错误”&#xff0c;卸载了重装还是老样子。或者升级window media player到最新版本等等&#xff0c;却还是解决不了&#xff01;现在介绍一种方法&#xff0c;跟大家一起分享&#xff1a; 点左下角开始&#xff…

太快了,太变态了:什么会影响Java中的方法调用性能?

那么这是怎么回事&#xff1f; 让我们从一个简短的故事开始。 几周前&#xff0c;我提议对Java核心libs邮件列表进行更改 &#xff0c;以覆盖当前final一些方法。 这刺激了一些讨论主题-其中之一是其中一个性能回归通过采取这是一个方法被引入的程度final免遭停止它final 。 我…

mac中apache服务器及虚拟主机配置

输入 sudo apachectl start&#xff0c;这样Apache就启动了。打开Safari浏览器地址栏输入 “http://localhost”&#xff0c;可以看到内容为“It works!”的页面。其位于“/Library&#xff08;资源库&#xff09;/WebServer/Documents/”下&#xff0c;这就是Apache的默认根目…

1、dubbo的概念

Dubbo是什么&#xff1f; Dubbo是阿里巴巴SOA服务化治理方案的核心框架&#xff0c;每天为2,000个服务提供3,000,000,000次访问量支持&#xff0c;并被广泛应用于阿里巴巴集团的各成员站点。Dubbo[]是一个分布式服务框架&#xff0c;致力于提供高性能和透明化的RPC远程服务调用…

轻云服务器的性能,腾讯云轻量应用服务器性能评测(以香港地域为例)

腾讯云轻量应用服务器香港节点24元/月&#xff0c;价格很不错&#xff0c;ForeignServer来说说腾讯云轻量服务器香港地域性能评测&#xff0c;包括腾讯云轻量应用服务器CPU型号配置、网络延迟速度测试&#xff1a;腾讯云香港轻量应用服务器性能评测腾讯云轻量应用服务器地域可选…

vue2.5.2版本 :MAC设置应用在127.0.0.1:80端口访问; 并将127.0.0.1指向www.yours.com ;问题“ Invalid Host header”

0.设置自己的host文件&#xff0c;将127.0.0.1指向自己想要访问的域名 127.0.0.1 www.yours.com 1.MAC设置应用在127.0.0.1&#xff1a;80端口访问&#xff1a; config/index.js目录下修改host和port 然后sudo运行npm run dev:(mac的80端口是被自身分享应用占用的&#xff0c…

在Spring MVC应用程序中使用Bean Validation 1.1获得更好的错误消息

在许多新功能中&#xff0c; Bean Validation 1.1引入了使用统一表达式语言&#xff08;EL&#xff09;表达式的错误消息插值。 这允许基于条件逻辑来定义错误消息&#xff0c;还可以启用高级格式化选项 。 添加到Spring MVC应用程序后&#xff0c;您可以非常简单地显示更友好的…

Google Android 平台正式开源

Google 推出移动设备软件平台 Android 之时&#xff0c;曾向开发者开放 SDK 包&#xff0c;并许诺将在开源许可模式下开放其全部代码&#xff0c;今天&#xff0c;Google 与其合作伙伴&#xff0c;在 Open Handset Alliance 兑现了其承诺&#xff0c;用户现在可以正式下载 Andr…

JSP彩色验证码

产生验证码图片的文件-----image.jsp <% page contentType"image/jpeg" import"java.awt.*,java.awt.image.*,java.util.*,javax.imageio.*" %><%!Color getRandColor(int fc,int bc){//给定范围获得随机颜色 Random random new Random()…

自定义Windows右击菜单调用Winform程序

U9_Git中ignore文件处理 背景 U9代码中有许多自动生成的文件&#xff0c;不需要上传Git必须BE Entity中的.target文件 .bak 文件 Enum.cs结尾的文件&#xff0c;还有许多 extand文件。 这些文件都不需要上传Git。 但是这些文件太多了&#xff0c;不可能手动加入到ignore文件中。…

替换富文本里的px为rem

var content 23pxcontent content.replace(/(\d )px/g, function(s, t) {s s.replace(px, );var value parseInt(s) * 0.001; // 100px 1remreturn value "rem"; //0.23rem }); 更多专业前端知识&#xff0c;请上 【猿2048】www.mk2048.com

centos7服务器文件同步,centos7文件实时同步工具lsyncd

1.本地目录同步# yum install lsyncd# vi /etc/lsyncd.conf------ User configuration file for lsyncd.---- Simple example for default rsync, but executing moves through on the target.---- For more examples, see /usr/share/doc/lsyncd*/examples/---- (注释掉这行)s…

Gradle Introduction

目录 Compileing development ProcessOld compile MothedModern compile MothedWhat is GradleGradle EffectWhat is GroovyGroovy syntax relesStructure ScriptPeojectAttributeTaskExample #1applyExample #1Example #2Dependency ManagementExample #1Example #2Multiple P…

命名空间的引用问题

1、using System.Data; 2、using System.Data.SqlClient; 添加引用的时候&#xff0c;只要添加System.Data “类型的初始值设定引发异常” “未能加载程序集或它的某一个依赖项”-------这种错误可能跟&#xff08;命名空间&#xff09;程序集的引用有关系 转载于:https://www.…

使用LinkedHashMap的Code4ReferenceList最近使用(LRU)实现

最近&#xff0c;我偶然发现了Java面试问题之一&#xff1a; “使用Java集合类实现最近使用的列表&#xff08;LRU&#xff09;缓存吗&#xff1f;” 如果您以前曾处理过类似的问题&#xff0c;那么对您来说真的很容易。 否则&#xff0c;您将开始考虑实现LRU缓存的最佳收集类…

sha1.js

function encodeUTF8(s) {var i, r [], c, x;for (i 0; i < s.length; i)if ((c s.charCodeAt(i)) < 0x80) r.push(c);else if (c < 0x800) r.push(0xC0 (c >> 6 & 0x1F), 0x80 (c & 0x3F));else {if ((x c ^ 0xD800) >> 10 0) //对四字节…

angular 获取ng-repeat完成状态 $last

$index $first $middle $last $odd $even html <ul><li ng-repeat"item in data" repeat-finish&#xff1d;"renderFinish()">{{item.str}}</li> </ul> 指令 app.directive(repeatFinish,function(){return {link: function(sco…