Floyd算法
1.定义概览
Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。
2.算法描述
1)算法思想原理:
Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)
从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
2).算法描述:
a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。
3).Floyd算法过程矩阵的计算----十字交叉法(暂时没看懂,望大神指教)
方法:两条线,从左上角开始计算一直到右下角 如下所示
给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点
相应计算方法如下:
最后A3即为所求结果
3.算法代码实现:
1 typedef struct 2 { 3 char vertex[VertexNum]; //顶点表 4 int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表 5 int n,e; //图中当前的顶点数和边数 6 }MGraph; 7 8 void Floyd(MGraph g) 9 { 10 int A[MAXV][MAXV]; 11 int path[MAXV][MAXV]; 12 int i,j,k,n=g.n; 13 for(i=0;i<n;i++) 14 for(j=0;j<n;j++) 15 { 16 A[i][j]=g.edges[i][j]; 17 path[i][j]=-1; 18 } 19 for(k=0;k<n;k++) 20 { 21 for(i=0;i<n;i++) 22 for(j=0;j<n;j++) 23 if(A[i][j]>(A[i][k]+A[k][j])) 24 { 25 A[i][j]=A[i][k]+A[k][j]; 26 path[i][j]=k; 27 } 28 } 29 }
算法时间复杂度:O(n3)
结合代码 并参照上图所示 我们来模拟执行下 这样才能加深理解:
第一关键步骤:当k执行到x,i=v,j=u时,计算出v到u的最短路径要通过x,此时v、u联通了。
第二关键步骤:当k执行到u,i=v,j=y,此时计算出v到y的最短路径的最短路径为v到u,再到y(此时v到u的最短路径上一步我们已经计算过来,直接利用上步结果)。
第三关键步骤:当k执行到y时,i=v,j=w,此时计算出最短路径为v到y(此时v到y的最短路径长在第二步我们已经计算出来了),再从y到w。
依次扫描每一点(k),并以该点作为中介点,计算出通过k点的其他任意两点(i,j)的最短距离,这就是floyd算法的精髓!同时也解释了为什么k点这个中介点要放在最外层循环的原因.
hdu-2544代码:
#include <stdio.h> #include <string.h> #define MAX 1000000 int map[110][110]; int n; void flyod() {int i,j,k;for(k=1;k<=n;k++)for(i=1;i<=n;i++){for(j=1;j<=n;j++)if(map[i][j]>(map[i][k]+map[k][j]))map[i][j]=map[i][k]+map[k][j];}printf("%d\n",map[1][n]); } int main() {int m;while(scanf("%d %d",&n,&m),n||m){int i,j,a,b,c;for(i=0;i<=n;i++)for(j=0;j<=n;j++)map[i][j]=MAX;for(i=0;i<m;i++){scanf("%d %d %d",&a,&b,&c);if(c<map[a][b])map[a][b]=map[b][a]=c;}flyod();}return 0; } //ac //flyod算法,31ms