C++ 动态规划经典案例解析之最长公共子序列(LCS)_窥探递归和动态规划的一致性

1. 前言

动态规划处理字符相关案例中,求最长公共子序列以及求最短编辑距离,算是经典中的经典案例。

讲解此类问题的算法在网上一抓应用一大把,即便如此,还是忍不住有写此文的想法。毕竟理解、看懂都不算是真正掌握,唯有瞧出其中玄机,能有自己独有的见解和不一样的感悟方算是把知识学到灵魂深入。

好了!闲话少说,进入正题。

2. 最长公共子序列(LCS)

2.1 问题描述

最长公共子序列,指找出 2 个或多个字符串中的最长公共子序列。

如字符串 s1=kabcs2=taijc,其最长公共子序列是ac

Tips: 子序列只要求其中字符保持和原字符串中一样的顺序,而不一定连续。

2.2 递归思想

这是一道求最值的题目,只要是求最值,必然会存在多个选择,原理很简单,如果没有多个选择,还有必要纠结谁是最大谁是最小吗?

Tips: 在你面前有苹果、桔子、香蕉……你只能选择一个,这时候方有纠结。如果面前只有苹果,还会纠结吗?

面对此问题,可以采用化整为零的思想,从宏观层面转移到微观层面,缩小问题的规模的递归思想。

如为字符串s1设置位置指针 i,为字符串s2设置位置指针j,则问题可以抽象为如下函数。函数的语义:ij作为起始位置时字符串s1,s2的最长公共子序列。

int lcs(string s1,int i,string s2,int j);
//如果 s1、s2为全局变量,函数可以是
int lcs(int i,int j);  

41.png

  • 初始时,i=0j=0意味求解完整的s1s2的最长公共子序列。此时规模最大,无法直接得到答案。如此,把问题延续到规模较小的子问题。

42.png

​ 上文说过,求最值一定存在多个选择的,原始问题中的k!=t,则可存在如下 3 种选择:

​ A、i不动,j+1。即把i指向作为起始位置的s1字符串和j+1作为起始位置的s2字符串继续比较。可算为一个子问题。

43.png

​ B、j不动,i+1。即把i+1指向作为起始位置的s1字符串和j作为起始位置的s2字符串继续比较。可算为另一个子问题。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Cr2f8B0w-1691975983175)(D:\红泥巴\我的课程体系\数据结构与算法\动态规划系列\images\44.png)]

​ C、ij同时移动到下一个位置。即把i+1指向作为起始位置的s1字符串和j+1作为起始位置的s2字符串继续比较。也算为一个子问题。

45.png

​ 也就是说,当原始问题中ij指向位置字符不相同时,存在 3 个选择。至于子问题如何求解,这个归功于递归思想。

Tips: 递归最大的好处就是只需要确定基础函数的功能,然后确定子问题,则子问题的内部如何求解站在宏观角度可以不管。反之它可以一步一步继续缩小问题规模,直到有答案为止。

​ 然后在3 种选择中,返回值最大的那一个作为当前的问题的结果。

int lcs(string s1,int i,string s2,int j){if(s1[i]!=s2[j]){//有 3 种选择int sel_1=lcs(s1,i,s2,j+1);int sel_2=lcs(s1,i+1,s2,j);int sel_3=lcs(s1,i+1,s2,j+1);return max(sel_1,sel_2,sel_3);} 
}
  • 如下图所示,当i和j所指向位置的值相同时,必然在当前子问题中就找到了一个公共字符,则最终结果就是后续子问题的结果基础上加 1 ,则为最长公共子序列为原来的值加 1

    Tips: 在海滩上捡贝壳时,当前拾到了一个,回家时最终能拾到的贝壳一定是当前拾到的这一个加上后续所拾到的贝壳。

45.png

​ 同时移动 ij,进入规模较小的子问题。如下图所示。

​ 此时可总结一下,使用递归求最长公共子序列,类似于玩消消乐,相同,则消掉,直接进入剩下的内容。不相同,选择会多些。

46.png

int lcs(string s1,int i,string s2,int j){if(s1[i]!=s2[j]){//有 3 种选择int sel_1=lcs(s1,i,s2,j+1);int sel_2=lcs(s1,i+1,s2,j);int sel_3=lcs(s1,i+1,s2,j+1);//三者之中选择最大返回值}else{//只有一个选择return lcs(s1,i+1,s2,j+1)+1;}
}
  • 递归边界。当i==s1.size() 或 j==s2.size()时,说明已经扫描到了子符串的最后。如下图所示,无论哪一个指针先到达字符串的末尾,则都不再存在任何公共子序列。

47.png

int lcs(string s1,int i,string s2,int j){if(i==s1.size() || j==s2.size())return 0;if(s1[i]!=s2[j]){//有 3 种选择int sel_1=lcs(s1,i,s2,j+1);int sel_2=lcs(s1,i+1,s2,j);int sel_3=lcs(s1,i+1,s2,j+1);//三者之中选择最大返回值}else{//只有一个选择return lcs(s1,i+1,s2,j+1)+1;}
}

上述是基于递归的角度分析问题,完整的代码如下:

#include <iostream>
using namespace std;
int lcs(string s1,int i,string s2,int j) {if(i==s1.size() || j==s2.size())return 0;if(s1[i]!=s2[j]) {//有 3 种选择int sel_1=lcs(s1,i,s2,j+1);int sel_2=lcs(s1,i+1,s2,j);int sel_3=lcs(s1,i+1,s2,j+1);int maxVal=max(sel_1,sel_2);maxVal=max(maxVal,sel_3);return maxVal;} else {//只有一个选择return lcs(s1,i+1,s2,j+1)+1;}
}
int main() {string s1,s2;cin>>s1>>s2;int res= lcs(s1,0,s2,0);cout<<res;return 0;
}

当字符串的长度较大时,基于递归的运算量会较大,问题在于递归算法中存在大量的重叠子问题。

2.3 重叠子问题

绘制递归树,可清晰看到重叠子问题的存在。

48.png

并且可以看到 sel_1sel_2分支包括sel_3分支,可以使用缓存方案解决递归中的重叠子问题,让重叠子问题只被计算一次。完整代码如下 :

#include <iostream>
#include <map>
using namespace std;
//缓存
map<pair<int,int>,int> cache;
int lcs(string s1,int i,string s2,int j) {if(i==s1.size() || j==s2.size())return 0;pair<int,int> p= {i,j};if (cache[p] ) {return cache[p];}if(s1[i]!=s2[j]) {//有 3 种选择int sel_1=lcs(s1,i,s2,j+1);int sel_2=lcs(s1,i+1,s2,j);cache[p]=max(sel_1,sel_2);;} else {//只有一个选择cache[p]=lcs(s1,i+1,s2,j+1)+1;}return 	cache[p];
}
int main() {string s1,s2;cin>>s1>>s2;int res= lcs(s1,0,s2,0);cout<<res;return 0;
}

递归实现性能不可观,代码层面也稍显繁琐。类似于这样求最值的问题,可以试着使用动态规划来实现。

2.4 动态规划

递归解决问题的思想是由上向下,所谓由上向下,指先搁置规模较大的问题,等规模较小的子问题解决后再回溯出大问题的解。通过上文贴的递归树可以清晰看到求解流程。

动态规划的思想是由下向上,是基于枚举思想。记录每一个子问题的解,最终推导出比之更大问题的解。当然,要求小问题具有独立性和最优性。

无论由上向下,还是由下向上,其本质都是知道子问题答案后,再求解出大问题的答案。动态规划算法是直接了当,递归是迂回求解。

现以求字符串的最长公共子序列为例,讲解动态规划的求解过程。

构建dp数组,用来记录所有子问题的解,类似于递归实现的缓存器。 于本问题而言,dp是一个二维数组,理论上讲,从A推导出B,再从B推导出C……问题域关心的是最后的推导结论C,之前使用过的历史推导结论其实是可以不用存储。有点类似于"忘恩负义",所以可以对于dp数组进行压缩。

  • 构建dp二维数组。先初始化数组的第一行和第一列的值为0。推导必须有一个源头,这里的 0就是源头。

    s1=""、s2="a……" 或当s1="a……"、s2=""或当s1=""、s2=""时可认为最长公共子序列的值为0

49.png

  • 如图,让i=1、j=1,比较 s1[i]和s2[j]位置的字符,显然kt是不相等的。递归是看后面(还没求解)有多少个子问题可以选择,动态规划是看前面(已经求解)有多个子问题会影响当前子问题。对于当前位置而言,对之有影响的位置有3个。如下图标记为黄色区域位置。

    1位置坐标为(i,j-1)。表示s1中有ks2中无t时最长公共子序列的值。

    2位置坐标为(i-1,j-1)。表示s1中无ks2中无t时最长公共子序列的值。

    3位置坐标为(i-1,j)。表示s1中无ks2中有t时最长公共子序列的值。

50.png

​ 可以舍弃位置3,然后在位置1和位置2中求最大值。

51.png

  • i=1不变,改成j的值。一路比较s1[i]s2[j]中值,因都不相等,根据前面的分析,很容易填写出dp值。

52.png

  • 移动i=2,重置j=1且移动j

    ij所在位置的字符不相等时的问题已经分析。

    如下图,当 i=2,j=2时,s[i]和s[j]的值相等,则影响此位置值的前置位置应该是哪个?

54.png

​ 相等,显然最长公共子序列会增加1,问题是在哪一个前置子问题的值上加 1

​ 其实,只需要在如下黄色区域位置的值上加上1,此位置表示当s1和s2中都没有a的时候。

56.png

  • 按如上分析原理,可以把整个dp表填写完成。

58.png

编码实现:

#include <iostream>
#include <map>
using namespace std;
int dp[100][100]= {0};
void lcs(string s1,string s2) {//初始化动态规划表for(int i=0; i<s2.size(); i++)dp[0][i]=0;for(int i=0; i<s1.size(); i++)dp[i][0]=0;for(int i=1; i<=s1.size(); i++) {for(int j=1; j<=s2.size(); j++)if(s1[i-1]==s2[j-1]) {//相等dp[i][j]=dp[i-1][j-1]+1;} else {dp[i][j]=max(dp[i-1][j],dp[i][j-1]);}}
}
int main() {string s1,s2;cin>>s1>>s2;lcs(s1,s2);for(int i=0; i<=s1.size(); i++) {for(int j=0; j<=s2.size(); j++) {cout<<dp[i][j]<<"\t";}cout<<endl;}cout<<"最长公共子序列:"<<endl;int res=dp[s1.size()][s2.size()];cout<<res<<endl;return 0;
}

测试结果:

59.png

4. 总结

最长公共子序列很有代表性,分析基于递归和动态规划的实现过程,可以帮助我们理解此类问题,且解决此类问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/35711.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多线程与并发编程面试题总结

多线程与并发编程 多线程 线程和进程的区别&#xff1f; 从操作系统层面上来讲&#xff1a;进程(process)在计算机里有单独的地址空间&#xff0c;而线程只有单独的堆栈和局部内存空间&#xff0c;线程之间是共享地址空间的&#xff0c;正是由于这个特性&#xff0c;对于同…

vscode debug python 带参数

两种方法 第一种&#xff1a; 1&#xff0c;侧边栏选择运行和调试 2&#xff0c;请先创建一个launch.json文件 3&#xff0c;并选择配置文件为python文件 此时你的工作目录下会多一个目录.vscode和该目录下一个launch.json文件&#xff0c;该文件则配置了你的debug配置。在…

【报错】ModuleNotFoundError: No module named ‘websocket‘

1 报错 ModuleNotFoundError: No module named websocket 2 解决方法 pip install websocket 1 报错 AttributeError: module websocket has no attribute enableTrace 2 分析 一般是由于websocket的依赖包没有安装造成的。websocket.enableTrace()方法是在websocket-cli…

C语言第十课----------------扫雷----------数组的经典练手题

作者前言 &#x1f382; ✨✨✨✨✨✨&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f382; &#x1f382; 作者介绍&#xff1a; &#x1f382;&#x1f382; &#x1f382;…

React构建的JS优化思路

背景 之前个人博客搭建时&#xff0c;发现页面加载要5s才能完成并显示 问题 React生成的JS有1.4M&#xff0c;对于个人博客服务器的带宽来说&#xff0c;压力较大&#xff0c;因此耗费了5S的时间 优化思路 解决React生成的JS大小&#xff0c;因为我用的是react-router-dom…

prometheus告警发送组件部署

一、前言 要实现Prometheus的告警发送需要通过alertmanager组件&#xff0c;当prometheus触发告警策略时&#xff0c;会将告警信息发送给alertmanager&#xff0c;然后alertmanager根据配置的策略发送到邮件或者钉钉中&#xff0c;发送到钉钉需要安装额外的prometheus-webhook…

模拟实现消息队列(以 RabbitMQ 为蓝本)

目录 1. 需求分析1.1 介绍一些核心概念核心概念1核心概念2 1.2 消息队列服务器&#xff08;Broker Server&#xff09;要提供的核心 API1.3 交换机类型1.3.1 类型介绍1.3.2 转发规则&#xff1a; 1.4 持久化1.5 关于网络通信1.5.1 客户端与服务器提供的对应方法1.5.2 客户端额外…

【LangChain概念】了解语言链️:第2部分

一、说明 在LangChain的帮助下创建LLM应用程序可以帮助我们轻松地链接所有内容。LangChain 是一个创新的框架&#xff0c;它正在彻底改变我们开发由语言模型驱动的应用程序的方式。通过结合先进的原则&#xff0c;LangChain正在重新定义通过传统API可以实现的极限。 在上一篇博…

一文读懂!一年耗能堪比2个三峡电站的大数据中心,背后竟隐藏着这些秘密......

全国大数据中心1年的能耗规模相当于2个三峡电站一整年的发电量&#xff0c;这是为什么&#xff1f; 大数据中心每耗费1度电&#xff0c;只有一半用在了“计算”上面&#xff0c;其他的都应用在散热、照明等方面到底是怎么回事&#xff1f; 为什么说在算力上每投入1元&#xff0…

【二】数据库系统

数据库系统的分层抽象DBMS 数据的三个层次从 数据 到 数据的结构----模式数据库系统的三级模式&#xff08;三级视图&#xff09;数据库系统的两层映像数据库系统的两个独立性数据库系统的标准结构 数据模型从 模式 到 模式的结构----数据模型三大经典数据模型 数据库的演变与发…

【系统软件03】centos7安装和使用node-v18.16.0(centos7升级glibc 2.28)

【系统软件03】centos7安装和使用node-v18.16.0&#xff08;centos7升级glibc 2.28&#xff09; 前言&#xff1a;本文是解决node 18.16.0的依赖问题&#xff0c;具体的node安装流程&#xff0c;可以参考我的另外一篇文章。一、下载node v18.16.0二、下载glibc2.28&#xff08;…

uniapp使用阿里矢量库

然后解压复制全部到你的项目文件 最后只要这几个 然后引入 最后在你需要的页面使用

JavaWeb中Json传参的条件

JavaWeb中我们常用json进行参数传递 对应的注释为RequestBody 但是json传参是有条件的 最主要是你指定的实体类和对应的json参数能否匹配 1.属性和对应的json参数名称对应 2.对应实体类实现了Serializable接口&#xff0c;可以进行序列化和反序列化&#xff0c;这个才是实体类转…

Ajax同源策略及跨域问题

Ajax同源策略及跨域问题 同源策略ajax跨域问题什么是跨域&#xff1f;为什么不允许跨域&#xff1f;跨域解决方案1、CORS2、express自带的中间件cors3、JSONP原生JSONPjQuery发送JSONP 4、使用vscode的Live Server插件 同源策略 同源策略&#xff08;Same-Origin Policy&#…

电脑合上盖子无线网络不会断开

控制面板\硬件和声音\电源选项\系统设置 最终选择不会采取任何操作 选择不会采取任何操作

前端性能优化之性能优化的指标和工具(chrome devtools、lighthouse、webpagetest)

文章目录 引言一、为什么要进行web性能优化二、RAIL测量模型1. 什么是RAIL2. 性能测量工具 三、性能测量工具的使用和性能指标以及优化目标1. Chrome DevTools1. 打开调试工具方式和配置2. network下的几个性能指标1. requests 请求总数2. transferred实际从服务器下载的数据量…

【数据结构与算法】十大经典排序算法-希尔排序

&#x1f31f;个人博客&#xff1a;www.hellocode.top &#x1f3f0;Java知识导航&#xff1a;Java-Navigate &#x1f525;CSDN&#xff1a;HelloCode. &#x1f31e;知乎&#xff1a;HelloCode &#x1f334;掘金&#xff1a;HelloCode ⚡如有问题&#xff0c;欢迎指正&#…

手撕数据结构之栈+例题

目录 一、栈的概念及结构 二、栈的头文件及基本框架 三、接口实现 1、对栈的初始化 2、栈的销毁 3、入栈操作 4、出栈操作 5、判断栈是否为空 6、返回栈顶元素 7、遍历栈 四、有效的括号 - 力扣&#xff08;LeetCode&#xff09; 题目描述&#xff1a; 思路&#xff…

静态网页和动态网页区别

1&#xff0c;静态网页和动态网页有何区别 1) 更新和维护 静态网页内容一经发布到网站服务器上&#xff0c;无论是否有用户访问&#xff0c;这些网页内容都是保存在网站服务器上的。如果要修改网页的内容&#xff0c;就必须修改其源文件&#xff0c;然后重新上传到服务器上。…

k8s-----集群调度

目录 一&#xff1a;调度约束 二&#xff1a;Pod 启动创建过程 三&#xff1a;k8s调度过程 1、Predicate 有一系列的常见的算法 2、常见优先级选项 3、指定调度节点 &#xff08;1&#xff09;nodeName指定 &#xff08;2&#xff09;nodeSelector指定 四&#xff1a;亲和…