《雷达像智能识别对抗研究进展》阅读记录

(1)引言

​ 神经网络通常存在鲁棒性缺陷,易受到对抗攻击的威胁。攻击者可以隐蔽的诱导雷达智能目标识别做出错误预测,如:

在这里插入图片描述

​ a图是自行车,加上对抗扰动后神经网络就会将其识别为挖掘机。

(2)雷达像智能识别

​ 传统的雷达像识别方法通常利用特征工程构建模板库,并采用合适的分类器进行识别。其效果特别依赖于人工设计特征的质量。

​ 基于HRRP(High-Resolution Range Profile)是一维距离像,具有姿态敏感性,幅度敏感性和平移敏感性等。通常采用一维卷积网络和循环神经网络。

​ 二维像主要为SAR图像和ISAR图像,目前针对SAR图像研究较多。但是相比于光学图像,雷达图像获取难度高,因此再训练中的样本不够会导致过拟合现象。有以下几种方法(1)使用轻量化神经网络,大幅度减少网络参数;(2)对有限样本进行精细化处理进或利用生成式模型扩充训练集;(3)再雷达图像更少的情况下,使用迁移学习和元学习等方法。

​ 基于速度神经网络的雷达像识别方法一般采用提到都下降来使得预测分布和真实分布的偏差最小。这种具有潜在的鲁棒性缺陷,比如只要在图像上若干个位置的像素施加扰动就可以增大偏差,从而导致模型误判。

(3)雷达像智能识别对抗攻击

​ 上一小节中最后一段的这种“设计并实现误导神经网络模型的对抗性扰动的过程叫做对抗攻击”。

3.1对抗攻击原理

​ 神经网络的训练过程是寻找最小化偏差的过程:(寻找模型参数 θ \theta θ
argmin  ⁡ θ l ( f θ ( x ) , y ) \operatorname*{\text{argmin }}_\theta l(f_\theta(x),y) θargmin l(fθ(x),y)
​ 神经网络的测试过程为寻找最小化偏差的过程:(寻找分类标签 i i i
argmin ⁡ i l ( f θ ( x ) , i ) , i ∈ ( 1 , 2 ⋅ ⋅ ⋅ k ) \underset{i}{\operatorname*{argmin}}~l(f_\theta(x),i),i\in(1,2\cdotp\cdotp\cdotp k) iargmin l(fθ(x),i),i(1,2⋅⋅⋅k)
​ 对抗攻击将样本 x x x 视为待优化量,沿着梯度上升的方向对 x x x 添加扰动来增大其与真实标签 y y y之间的交叉熵(偏差),即:
max ⁡ x l ( f θ ( x ) , y ) \max_x~l(f_\theta(x),y) xmax l(fθ(x),y)
​ 可以使用如下方法来设计扰动 η \eta η
min ⁡ η ∥ η ∥ L s . t . a r g m a x ( f ( x + η ⏟ x a d v ) ) ≠ y \min_\eta\left.\left\|\eta\right\|_L\mathrm{~s.t.~}\mathrm{~argmax}(f(\underbrace{x+\eta}_{x_{\mathrm{adv}}}))\neq y\right. ηminηL s.t.  argmax(f(xadv x+η))=y

3.2对抗攻击分类

在这里插入图片描述

​ 几乎所有的神经网络都通过梯度下降的方式来优化损失函数,损失函数值越小,代表分类误差越小,模型的识别效果越好。

​ 基于梯度的攻击沿着梯度上升的方向对干净的样本施加对抗扰动,使得新样本在模型上的损失函数值增大,以实现诱导模型误判的目的。

​ 基于优化的攻击将对抗扰动的生成转化为约束条件下的寻优问题,通过在限定条件下寻找最能影响分类结果的像素点扰动来达到模型误判的目的。

​ 生成式攻击利用生成对抗网络直接生成对抗样本,具有生成速度快,无需获取真实目标样本的优势。

​ 依据攻击者对目标模型的先验信息获取程度可以分为黑盒攻击,灰盒攻击,白盒攻击。

​ 依据攻击特异性,可以分为定向攻击和非定向攻击。定向攻击要求将对抗样本误判为攻击者指定的类别。非定向攻击要求将生成的对抗样本与模型的预测类别不同。

​ 依据攻击发生的阶段,对抗攻击可以分为逃避攻击和后门攻击后门攻击发生在模型的训练阶段,攻击者可篡改一部分训练数据或者对训练过程 进行恶意操纵,使模型对含有特定图案(称为触发 器)的图像样本预测为攻击者指定的类别,而对干净样本正常预测。

​ 逃避攻击通常需要在推理阶段结合待测样本与目标模型, 经过一定的优化过程在线产生。

3.3 雷达二维像智能识别对抗攻击

​ 早期雷达像智能识别对抗攻击方法将雷达像视为单通道的灰度图像,借鉴光学图像中的对抗攻击方法逐像素的生成对抗扰动。蕴含特征信息越丰富的雷达像越容易受到对抗噪声的扰动,并且对抗样本通常分布在几种特点的类别上。结构越复杂的网络越容易受到对抗样本的攻击。

​ 从物理实现的角度上看,光学图像的对抗扰动可通过相机拍摄实现由数字域向物理域的转换,而雷达像的对抗扰动则需要体现为目标回波的相干能量累积。

​ **我们希望建立数字域的雷达像对抗扰动与二面角、三面角 等真实物理结构的电磁散射特性的联系。从而增加雷达像对抗样本的物理可实现性。**对于运动中的雷达目标而言,背景区域不断变化,因此思路为将扰动约束在目标区域附近。将对抗扰动约束为若干个像素点的聚合后再添加到目标附近,以此来逼近实际场景中的目标散射点。掩膜约束。也有文献指出对抗攻击生成的高频非鲁棒特征可能导致模型的对抗脆弱性,通过对对抗扰动约束为SAR图像散斑的形式。

属性散射中心模型:

​ 属性散射中心模型用多个参数来描述二面角、三面角等典型结构的散射机理,可以定量描述频率 f f f、方位角 ϕ \phi ϕ等参数对目标电磁散射响应的影响,单个散射中心的响应可以表示为:
E ( f , ϕ ; Θ N ) = A ⋅ ( j f f c ) α ⋅ exp ⁡ ( − j 4 π f c ( x cos ⁡ ϕ + y sin ⁡ ϕ ) ) ⋅ sinc ⁡ ( 2 π f c L sin ⁡ ( ϕ − ϕ ˉ ) ) ⋅ exp ⁡ ( − 2 π f γ sin ⁡ ϕ ) \begin{aligned} E(f,\phi;\Theta_{N})=& A\cdot\left(\text{j}\frac f{f_\mathrm{c}}\right)^\alpha \cdot\exp\left(-\mathrm{j}\frac{4\pi f}c(x\cos\phi+y\sin\phi)\right) \cdot\operatorname{sinc}\left(\frac{2\pi f}cL\sin(\phi-\bar{\phi})\right) \cdot\exp(-2\pi f\gamma\operatorname{sin}\phi) \end{aligned} E(f,ϕ;ΘN)=A(jfcf)αexp(jc4πf(xcosϕ+ysinϕ))sinc(c2πfLsin(ϕϕˉ))exp(2πfγsinϕ)

其中 Θ N \Theta_{N} ΘN是影响散射响应相应的参数集指的是影响散射响应的参数集合。用这个模型来实现其物理可实现性。

3.4 雷达一维像智能识别对抗攻击

​ 针对HRRP目标的对抗攻击可分为全距离单元扰动和特定距离单元扰动。

全距离单元扰动:

​ 对于一个具有距离单元的HRRP样本 x x x,攻击者分别计算每个距离单元处所处的损失函数的梯度,并沿着梯度上升的方向添加适当的干扰脉冲便可以形成HRRP的对抗样本。

在这里插入图片描述

​ **缺点:**生成的扰动难以扩展到信号域。

特定距离单元扰动:

​ 与雷达二维像对抗样本相类似,针对HRRP识别模型的攻击也希望将扰动约束在目标区域的距离单元。首先找到HRRP数据中易受攻击的脆弱距离单元,然后利用干扰机在这些距离单元中注入特定幅值的干扰脉冲,实现了高置信度HRRP对抗样本的生成。

在这里插入图片描述

(4)雷达像智能识别对抗防御

​ 现有雷达像对抗防御方法主要借鉴光学图像对抗中的防御技术,本文依照防御阶段不同。将对抗防御方法分为输入端防御,模型端防御和输出端防御。输入端防御包括对训练数据和测试数据的预处理、数据增强等操作。模型端防御包括改善模型的训练测量和设计更鲁棒的模型结构 。输出端防御值调取模型的特征向量、logit向量、置信度向量等,

输入端防御:

​ 预处理方法将对抗扰动视为噪声,希望通过降噪、尺度变换等预处理方法去除对抗扰动。

模型端防御:

​ 希望改善自身模型的鲁棒性来降低对抗攻击的威胁,主要有优化训练目标函数和改进网络结构两种方式。

输出端防御:

​ 其本质是一个二分类任务。现有的对抗检测方法通常从统计分布的角度设计检测判据。查验模型输出的隐层特征、得分向量、置信度来判断待测样本是否存在异常。

(5)雷达智能识别对抗的开放问题

1.雷达HRRP的智能识别对抗

​ 尽管目前尚未有针对HRRP对抗样本的防御方法提出,但从信号形式看,HRRP数据和语音数据均具有一维的形式,且不同的信号均具有时序相关性。因此可以借鉴语音信号对抗防御中常用的音频扰动,音频压缩等方法,对HRRP对抗样本中的对抗性距离单元进行破坏或重构后再进行识别,以达到防御的目的。

2.小样本雷达像智能识别对抗

​ 当用户缺乏对预训练模型 和先验数据的监管时,攻击者可采用投毒或木马的形式在预训练模型中植入后门。使用含有后门的预 训练模型开展小样本学习,将导致用户模型难以收敛或者对中毒样本做出错误预测。

3.针对SAR图像目标检测网络对抗攻击

​ 针对SAR图像目标检测网络的对抗攻击也是重要的研究方向。藏待测目标、误导分类结果、干扰候选框生成等。SAR图像中背景区域与目标区域具有能量分布差异,在设计针对SAR图像目标检测网络的对抗攻击方法时可以利用这一先验信息。全局扰动攻击方法需对整幅图像的每一像素点进行 扰动,应用于大尺度SAR图像时物理实现难度大, 而局部扰动的方法仅在目标区域生成对抗补丁,更易于物理实现。

4.雷达对抗样本与库外样本的区分

​ 雷达目标识别模型在测试阶段极可能遇到训练集中未出现的样本,即库外样本(Out Of Distribution,ODD)样本。现有检测方法只能区分正常样本与异常样本,无法区分异常样本是属于ODD样本还是对抗样本。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/35524.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Quarkus技术系列】打造基于Quarkus的云原生微服务框架实践(1)

前提介绍 本系列文章主要讲解如何基于Quarkus技术搭建和开发"专为Kubernetes而优化的Java微服务框架"的入门和实践,你将会学习到如何搭建Quarkus微服务脚环境及脚手架,开发Quarkus的端点服务,系统和应用层级的配置介绍与Quarkus的…

单芯片3路CC管理的VR转接器解决方案

VR眼镜即VR头显,也称虚拟现实头戴式显示设备,随着元宇宙概念的传播,VR眼镜的热度一直只增不减,但是头戴设备的续航一直被人诟病,如果增大电池就会让头显变得笨重影响体验,所以目前最佳的解决方案还是使用VR…

[HDLBits] Exams/m2014 q3

Consider the function f shown in the Karnaugh map below. Implement this function. d is dont-care, which means you may choose to output whatever value is convenient. //empty

学习左耳听风栏目90天——第六天 6/90(学习左耳朵耗子的工匠精神,对技术的热爱)【如何拥有技术领导力】

学习左耳听风栏目90天——第六天 6/90(学习左耳朵耗子的工匠精神,对技术的热爱)【如何拥有技术领导力】

虚拟机内搭建CTFd平台搭建及CTF题库部署,局域网内机器可以访问

一、虚拟机环境搭建 1、安装docker、git、docker-compose ubuntu: sudo apt-get update #更新系统 sudo apt-get -y install docker.io #安装docker sudo apt-get -y install git #安装git sudo apt-get -y install python3-pip #安装pip3 sudo pip install dock…

Kubeadm安装K8s集群

一、硬件环境 准备3台Linux服务器&#xff0c;此处用Vmware虚拟机。 主机名CPU内存k8smaster2核4Gk8snode12核4Gk8snode22核4G 二、系统前置准备 配置三台主机的hosts文件 cat << EOF > /etc/hosts 192.168.240.130 k8smaster 192.168.240.132 k8snode1 192.168.…

腾讯出品Pag动画框架在Android端的使用-初级

Pag动画框架作为一个第三方框架&#xff0c;它的优缺点与Lottie是相似&#xff0c;此处不过多赘述。如果你们的项目中打算用了&#xff0c;肯定是经过了一定的调研的。Pag动画框架分几个版本&#xff0c;有免费的有收费的。我们目前用的社区免费版&#xff0c;只用来展示Pag动画…

项目实战 — 消息队列(8){网络通信设计②}

目录 一、客户端设计 &#x1f345; 1、设计三个核心类 &#x1f345; 2、完善Connection类 &#x1f384; 读取请求和响应、创建channel &#x1f384; 添加扫描线程 &#x1f384; 处理不同的响应 &#x1f384; 关闭连接 &#x1f345; 3、完善Channel类 &#x1f384; 编…

广州华锐互动:VR3D课程在线教育平台为职业院校提供沉浸式的虚拟现实学习体验

随着科技的飞速发展&#xff0c;虚拟现实(VR)和增强现实(AR)技术已经逐渐渗透到我们生活的各个领域。其中&#xff0c;VR3D课程在线教育平台作为一种新兴的教育方式&#xff0c;正在逐渐改变我们的学习方式和体验。本文将详细介绍VR3D课程在线教育平台的应用前景及特点。 VR3D课…

【设计模式】工厂模式

工厂模式 工厂模式&#xff08;Factory Pattern&#xff09;是 Java 中最常用的设计模式之一。这种类型的设计模式属于创建型模式&#xff0c;它提供了一种创建对象的最佳方式。 工厂模式提供了一种将对象的实例化过程封装在工厂类中的方式。通过使用工厂模式&#xff0c;可以…

uniapp软键盘谈起遮住输入框和头部被顶起的问题解决

推荐&#xff1a; pages.json中配置如下可解决头部被顶起和表单被遮住的问题。 { "path": "pages/debug/protocol/tagWord", "style": { "app-plus": { "soft…

Java实战:高效提取PDF文件指定坐标的文本内容

前言 临时接到一个紧急需要处理的事项。业务侧一个同事有几千个PDF文件需要整理&#xff1a;需要从文件中的指定位置获取对应的编号和地址。 要的急&#xff0c;工作量大。所以就问到技术部有没有好的解决方案。 问技术的话就只能写个demo跑下了。 解决办法 1. 研究下PDF文档…

案例15 Spring Boot入门案例

1. 选择Spring Initializr快速构建项目 ​ 2. 设置项目信息 ​ 3. 选择依赖 ​ 4. 设置项目名称 ​ 5. 项目结构 ​ 6. 项目依赖 自动配置了Spring MVC、内置了Tomcat、配置了Logback(日志)、配置了JSON。 ​ 7. 创建HelloController类 com.wfit.boot.hello目录下创建HelloCo…

开发过程中遇到的问题以及解决方法

巩固基础&#xff0c;砥砺前行 。 只有不断重复&#xff0c;才能做到超越自己。 能坚持把简单的事情做到极致&#xff0c;也是不容易的。 开发过程中遇到的问题以及解决方法 简单易用的git命令 git命令&#xff1a; 查看有几个分支&#xff1a;git branch -a 切换分支&#…

Azure创建第一个虚拟机

首先&#xff0c;登录到 Azure 门户 (https://portal.azure.com/)。在 Azure 门户右上角&#xff0c;点击“虚拟机”按钮&#xff0c;并点击创建&#xff0c;创建Azure虚拟机。 在虚拟机创建页面中&#xff0c;选择所需的基本配置&#xff0c;包括虚拟机名称、操作系统类型和版…

【JVM】JVM 调优的参数都有哪些?

文章目录 1. 设置堆空间大小2. 虚拟机栈的设置3. 年轻代中Eden区和两个Survivor区的大小比例4. 年轻代晋升老年代阈值5. 设置垃圾回收收集器 1. 设置堆空间大小 设置堆的初始大小和最大大小&#xff0c;为了防止垃圾收集器在初始大小、最大大小之间收缩堆而产生额外的时间&…

python编程小游戏简单的,python小游戏编程100例

大家好&#xff0c;给大家分享一下python编程小游戏简单的&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01; 不会python就不能用python开发入门级的小游戏&#xff1f; 当然不是&#xff0c;我收集了十个python入门小游戏的源码和教程&#…

分支语句和循环语句(1)

这篇文章我们详细的把分支语句和循环语句给大家进行讲解。 分支语句&#xff1a; if switch 循环语句&#xff1a; while for do while goto语句&#xff1a; 1.什么是语句&#xff1f; C语句可分为以下五类&#xff1a; 1. 表达式语句 2. 函数调用语句 3. 控制…

ORCA优化器浅析——CDXLOperator Base class for operators in a DXL tree

如上图所示&#xff0c;CDXLOperator作为Base class for operators in a DXL tree&#xff0c;其子类CDXLLogical、CDXLScalar、CDXLPhysical作为逻辑节点、物理节点和Scalar节点的DXL表示类&#xff0c;因此其包含了这些类的共同部分特性&#xff0c;比如获取其DXL节点表示的函…

Qt 文件对话框使用 Deepin风格

当你在Deepin或UOS 上开发 Qt 程序时&#xff0c;如果涉及到文件对话框功能&#xff0c;那么就会遇到调用原生窗口的问题。 如果你使用的是官方的Qt版本&#xff0c;那么在Deepin或者UOS系统上&#xff0c;弹出的文件对话框会是如下这样&#xff1a; 而Deepin或UOS系统提供的默…