python_fullstack基础(十一)-常用模块

python常用模块

re模块

一、正则表达式

在线测试工具 http://tool.chinaz.com/regex/

1、字符组 : [字符组]

在同一个位置可能出现的各种字符组成了一个字符组,在正则表达式中用[]表示 
字符分为很多类,比如数字、字母、标点等等。 
假如你现在要求一个位置”只能出现一个数字”,那么这个位置上的字符只能是0、1、2…9这10个数之一。

2、字符

元字符: 
.:匹配除换行符以外的任意字符 
\w:匹配字母或数字或下划线 
\s:匹配任意的空白符 
\d:匹配数字 
\n:匹配一个换行符 
\t:匹配一个制表符 
\b:匹配一个单词的结尾 
^:匹配字符串的开始 
$:匹配字符串的结尾 
\W:匹配非字母或数字或下划线 
\D:匹配非数字 
\S:匹配非空白符 
a|b:匹配字符a或字符b 
():匹配括号内的表达式,也表示一个组

3、量词:

*:匹配零次或更多次 
+:匹配一次或更多次 
?:匹配零次或一次 
{n}:匹配n次 
{n,}:匹配n次或更多次 
{n,m}:匹配n次至m次

4、.*$的用法:

这里写图片描述

5、*+?{ }的用法:

这里写图片描述

6、字符集[][^]用法:

这里写图片描述

7、分组 ()与 或 |[^]用法:

这里写图片描述

8、转义符 \用法:

这里写图片描述

9、贪婪匹配用法:

这里写图片描述

二、python中re模块及常用方法

1、介绍

re 模块使 Python 语言拥有全部的正则表达式功能
re 模块也提供了与这些方法功能完全一致的函数,这些函数使用一个模式字符串做为它们的第一个参数

2、常用方法

    • 参数说明: 
      pattern —— 匹配的正则表达式 
      string —— 待匹配的字符串 
      flags —— 标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等
    • 匹配对象方法: 
      group(num=0) —— 匹配的整个表达式的字符串,group() 可以一次输入多个组这里写代码片号,在这种情况下它将返回一个包含那些组所对应值的元组 
      groups() —— 返回一个包含所有小组字符串的元组,从1到所含的小组号

    • ①☆findall()返回所有满足匹配条件的结果至列表中

import re
res = re.findall('s','life is short')
print(res)
>>> ['s','s']
  • ②☆search() 返回第一个包含匹配条件的信息对象,可以调用该对象的group()方法将匹配的字符输出,如果没有匹配到则调用group()方法会报错
import re
res = re.search('s','life is short')
print(res.group())
>>> 's'
  • ③☆match() 与search()方法类似,但是仅在字符串开始出匹配,返回第一个包含匹配条件的信息对象,调用该对象的group()方法将匹配的字符输出,如果没有匹配到则调用group()方法会报错
import re
res = re.match('l','life is short')
print(res.group())
>>> 'l'
  • ④split() 逐个按符合条件的字符串对待匹配字符串进行切分,返回结果列表
import re
res = re.split('[ab]','abcd') # 首先按'a'进行切分,形成['','bcd'],之后再按'b'进行切分,形成['','','cd']
print(res)
>>> ['','','cd']
  • ⑤sub() 将待匹配字符串中满足匹配条件的内容进行替换,最后一个参数指定替换的次数,返回替换后的字符串
import re
res = re.sub('\d','_','life8is7short7',2)
print(res)
>>> 'life_is_short7'
  • ⑥subn() 与sub()方法类型,但是无法指定替换的次数,并且输出的是一个元组,包括替换后的字符串和替换的总次数
import re
res = re.subn('\d','_','life8is7short7')
print(res)
>>> ('life_is_short_', 3)
  • ⑦compile() 将正则表达式编译成为一个正则表达式对象,之后可以用re模块中的方法对对象进行操作
import re
obj = re.compile('\d{3}')
res = obj.search('123abc456')
或者res = re.search(obj,'123abc456')
print(res.group())
  • ⑧finditer() finditer返回一个存放匹配结果的迭代器,用next等方法取出存放结果的对象,再用group()方法取出结果
import re
res = re.finditer('\d','a1b2c3d4e5')
print(next(res).group())
print(next(res).group())
print(next(res).group())
print([i.group() for i in res])
>>> 1
>>> 2
>>> 3
>>> ['4', '5']
  • ★findall的优先级查询: 将findall()方法中匹配条件中加括号后,只会输出匹配到的字符串;可以在括号中加入?:取消权限
import re
res = re.findall('www.(baidu|google).com','www.baidu.com')
print(res)
>>> ['baidu']#取消权限
import re
res = re.findall('www.(?:baidu|google).com','www.baidu.com')
print(res)
>>> ['www.baidu.com']
  • ★split的优先级查询:将split()方法中的匹配条件加括号后,会将满足条件的切分字符也输出值最终列表中,同样可以在括号中加入?:取消权限
import re
res = re.split('(\d)','life1is2short3')
print(res)
>>> ['life', '1', 'is', '2', 'short', '3', '']#取消权限 
import re
res = re.split('(?:\d)','life1is2short3')
print(res)
>>> ['life', 'is', 'short', '']

collections模块

在内置数据类型(dict、list、set、tuple)的基础上, 
collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。

1.namedtuple: 生成可以使用名字来访问元素内容的tuple

from collections import namedtuple
Point = namedtuple('point',['x','y'])
p1 = Point(1,2)
p2 = Point(99,100)print(p1.x)
print(p1.y)
print(p2)>>> 1
>>> 2
>>> point(x=99, y=100)

2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。 
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

from collections import deque
dq = deque(['A','B','C'])
dq.append('X')
dq.appendleft('Y')
print(dq)
>>> deque(['Y', 'A', 'B', 'C', 'X'])print(dq.pop())
>>> Xprint(dq.popleft())
>>> Ydq.insert(1,666)
print(dq)
>>> deque(['A', 666, 'B', 'C'])

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。 
计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

from collections import Counter
c = Counter('aaabbbbcccddddddeeeeffffff')
print(c)
>>> Counter({'d': 6, 'f': 6, 'e': 4, 'b': 4, 'c': 3, 'a': 3})

4.OrderedDict: 有序字典

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。 
如果要保持Key的顺序,可以用OrderedDict:

from collections import OrderedDict
od = OrderedDict([('a',1),('b',2),('c',3)])
print(od)
print(od['a'])
print(od['b'])
print(od['c'])>>> OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> 1
>>> 2
>>> 3

5.defaultdict: 带有默认值的字典

from collections import defaultdict
values = [11, 22, 33,44,55,66,77,88,99,90]dd = defaultdict(list)
dd['k1'].append(1)
dd['k1'].append(2)
dd['k1'].append(3)
dd['k1'].append(4)
dd['k1'].append(5)
print(dd)
>>> defaultdict(<class 'list'>, {'k1': [1, 2, 3, 4, 5]})

时间模块

一、表示时间的三种方式

1、时间戳(timestamp)

通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。

import time
print(time.time())
>>> 1515570662.77503

2、时间字符串(Format String

import time
print(time.strftime("%Y-%m-%d %H-%M-%S"))
>>> 2018-01-10 15-59-16

3、结构化时间(struct_time

import time
print(time.localtime())
>>> time.struct_time(tm_year=2018, tm_mon=1, tm_mday=10, tm_hour=16, tm_min=0, tm_sec=33, tm_wday=2, tm_yday=10, tm_isdst=0)

二、几种格式之间的转换

1、时间戳–>结构化时间

语法: 
time.gmtime(时间戳) #UTC时间,与英国伦敦当地时间一致 
time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间
import time
print(time.localtime(1515570662.77503))
>>> time.struct_time(tm_year=2018, tm_mon=1, tm_mday=10, tm_hour=15, tm_min=51, tm_sec=2, tm_wday=2, tm_yday=10, tm_isdst=0)
import time
print(time.gmtime(1515570662.77503))
>>> time.struct_time(tm_year=2018, tm_mon=1, tm_mday=10, tm_hour=7, tm_min=51, tm_sec=2, tm_wday=2, tm_yday=10, tm_isdst=0)

2、结构化时间–>时间戳

语法: 
time.mktime(结构化时间)
import time
time_tuple  = time.localtime(1500000000)
print(time.mktime(time_tuple))
>>> 1500000000.0

3、字符串时间–>结构化时间

语法: 
time.strptime(时间字符串,字符串对应格式)
import time
print(time.strftime("%Y-%m-%d %X"))
>>> 2018-01-10 16:19:46
print(time.strftime("%Y-%m-%d",time.localtime(1515570662.77503)))
>>> 2018-01-10

4、结构化时间–>字符串时间

语法: 
time.strftime(“格式定义”,”结构化时间”) 结构化时间参数若不传,则现实当前时间
import time
print(time.strptime("2017-03-16","%Y-%m-%d"))
>>> time.struct_time(tm_year=2017, tm_mon=3, tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=75, tm_isdst=-1)
print(time.strptime("07/24/2017","%m/%d/%Y"))
>>> time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=0, tm_yday=205, tm_isdst=-1)

random模块

一、常用方法

1、随机小数

import random
print(random.random()) # 随机输出在0-1之间的小数
>>> 0.11828833626857149import random
print(random.uniform(1,5)) # 随机输出在范围之间的小数
>>> 2.164732131520036

2、随机整数

import random
print(random.randint(5,10)) # randint中的范围包括首尾
>>> 8import random
print(random.randrange(5,10,2)) # randrange中的范围顾首不顾尾,可以指定步长
>>> 7

3、随机选择一个返回

import random
print(random.choice([1,'23',[4,5],(6,7)]))
>>> (6, 7)

4、随机选择多个返回,可以指定返回的个数

import random
print(random.sample([1,'23',[4,5],(6,7)],2)) 
>>> [(6, 7), 1]

5、打乱顺序

import random
item=[1,2,3,4,5,6,7,8,9]
random.shuffle(item)
print(item)
>>> [2, 6, 8, 3, 5, 4, 7, 1, 9]

二、应用实例

import random
def v_code():code = ''for i in range(5):num=random.randint(0,9)alf=chr(random.randint(65,90))add=random.choice([num,alf])code="".join([code,str(add)])return code
print(v_code())

os模块

os模块是与操作系统交互的一个接口

os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
os.chdir("dirname")  改变当前脚本工作目录;相当于shell下cd
os.curdir  返回当前目录: ('.')
os.pardir  获取当前目录的父目录字符串名:('..')
os.makedirs('dirname1/dirname2')    可生成多层递归目录
os.removedirs('dirname1')    若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
os.mkdir('dirname')    生成单级目录;相当于shell中mkdir dirname
os.rmdir('dirname')    删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
os.listdir('dirname')    列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
os.remove()  删除一个文件
os.rename("oldname","newname")  重命名文件/目录
os.stat('path/filename')  获取文件/目录信息
os.sep    输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/"
os.linesep    输出当前平台使用的行终止符,win下为"\t\n",Linux下为"\n"
os.pathsep    输出用于分割文件路径的字符串 win下为;,Linux下为:
os.name    输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
os.system("bash command")  运行shell命令,直接显示
os.popen("bash command)  运行shell命令,获取执行结果
os.environ  获取系统环境变量

os.path部分

os.path.abspath(path) 返回path规范化的绝对路径 os.path.split(path) 将path分割成目录和文件名二元组返回 os.path.dirname(path) 返回path的目录。其实就是os.path.split(path)的第一个元素 os.path.basename(path) 返回path最后的文件名。如何path以/或\结尾,那么就会返回空值。即os.path.split(path)的第二个元素
os.path.exists(path)  如果path存在,返回True;如果path不存在,返回False
os.path.isabs(path)  如果path是绝对路径,返回True
os.path.isfile(path)  如果path是一个存在的文件,返回True。否则返回False
os.path.isdir(path)  如果path是一个存在的目录,则返回True。否则返回False
os.path.join(path1[, path2[, ...]])  将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
os.path.getatime(path)  返回path所指向的文件或者目录的最后访问时间
os.path.getmtime(path)  返回path所指向的文件或者目录的最后修改时间
os.path.getsize(path) 返回path的大小

sys模块

sys模块是与python解释器交互的一个接口

sys.argv       命令行参数List,第一个元素是程序本身路径
sys.exit(n)        退出程序,正常退出时exit(0),错误退出sys.exit(1)
sys.version        获取Python解释程序的版本信息
sys.path           返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform       返回操作系统平台名称

二、应用实例:异常处理和status

import sys
try:sys.exit(1)
except SystemExit as e:print(e)

序列化模块

一、定义

将原本的字典、列表等内容转换成一个字符串的过程叫做序列化,其反过程叫反序列化。

二、目的

  1. 以某种存储形式使自定义对象持久化
  2. 将对象从一个地方传递到另一个地方
  3. 使程序更具维护性

三、过程

  • 字符串——反序列化——>其他数据结构
  • 字符串<——序列化——其他数据结构

四、序列化相关模块

1、json:用于字符串(包括其他支持json的语言)和python数据类型间进行转换

    • ①dumps、loads 内存操作,dumps用于将结构化数据转化成字符串,loads用于将字符串转化为结构化数据 
注意,json转换完的字符串类型的字典中的字符串是由”“表示的
import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
dic_d = json.dumps(dic)
print(dic_d)
>>> {"k2": "v2", "k3": "v3", "k1": "v1"}dic_s = json.loads(dic_d)
print(dic_s)
>>> {'k1': 'v1', 'k3': 'v3', 'k2': 'v2'}
  • ②dump、load 文件句柄操作,dumps用于将结构化数据转化成字符串并操作文件句柄存储于文件中, loads用于将字符串转化为结构化数据并操作文件句柄将数据从文件中读至内存
import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
with open('json_file',mode='w') as f:dic_fd=json.dump(dic,f)
文件中的内容:
>>> {"k3": "v3", "k2": "v2", "k1": "v1"}with open('json_file',mode='r') as f:dic_fs=json.load(f)
print(dic_fs)
>>> {'k1': 'v1', 'k3': 'v3', 'k2': 'v2'}
  • ③ensure_ascii关键字参数:ensure_ascii默认True,如果数据中包括非ascii字符,则会以bytes类型数据存储在文件中,若将ensure_ascii改为False,则会以人类可识别字符存储
import json# 默认ensure_ascii是True,说明支持系统用ascii编码进行数据存储,所以数据在文件中是以bytes类型(utf-8/utf-16/GBK)等方式进行
# 存储的,人类不能直接识别文件中的中文数据内容,如果非要识别则需要进行解码操作;
# 如果将ensure_ascii改为False,则在数据存储时就将数据按照人类可识别的内容进行存储,可直接阅读
dic = {'姓名':'张三','性别':'','年龄':'18'}
with open('json_file',mode='w') as f:dic_fd = json.dump(dic,f)
>>> {"\u5e74\u9f84": "18", "\u6027\u522b": "\u7537", "\u59d3\u540d": "\u5f20\u4e09"}str1 = b'\u5e74\u9f84'
print (str1.decode('unicode_escape'))
>>> 年龄dic = {'姓名':'张三','性别':'','年龄':'18'}
with open('json_file',mode='w') as f:dic_fd = json.dump(dic,f,ensure_ascii=False)
>>> 乱码,因为在windows系统下默认用GBK存储,但是道理没变,如果是内存操作,则可以通过pycharm是utf-8的字符编码直接读出

④其他参数说明

  • Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key

  • ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。)

  • indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json

  • separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。

  • sort_keys:将数据根据keys的值进行排序。
import json
data = {'username':['张三','李四'],'sex':'male','age':16}
json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False)
print(json_dic2)\>\>\> {"age":16,"sex":"male","username":["张三","李四"]}

2、pickle:用于python特有的类型和python的数据类型间进行转换

注意:

  • ①与json相似,pickle提供的方法与json相同,不同的是pickle可以转换python特有的数据类型,而非只有dic、list(tuple)
  • ②pickle在文件存储时,使用bytes类型进行存储,所以在读写文件的时候要求mode为wb/rb模式

3、shelve:只提供一个open方法,用key来访问,使用起来与字典类似

  • ①序列化到文件、从文件反序列化
import shelve
with shelve.open('shelve_file') as f:f['key'] = {1,2,3,4,5,6,7,8,9}import shelve
with shelve.open('shelve_file') as f:data = f['key']
print(data)
>>> {1, 2, 3, 4, 5, 6, 7, 8, 9}
  • ②该模块不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB。
import shelve
with shelve.open('shelve_file',flag='r') as f:data = f['key']
print(data)
>>> {1, 2, 3, 4, 5, 6, 7, 8, 9}
  • ③??? 该模块在默认情况下不会记录待持久化对象的任何修改,所以需要在shelve.open()时修改默认参数,否则对象的修改不会保存。
import shelve
with shelve.open('shelve_file', writeback=True) as f2:print('修改前:'+ str(f2['key']))f2['key'] = 'this was not here before'
>>> 修改前:{1, 2, 3, 4, 5, 6, 7, 8, 9}with shelve.open('shelve_file', writeback=True) as f3:print('修改后:'+str(f3['key']))
>>> 修改后:this was not here before

 

转载于:https://www.cnblogs.com/lidaxu/p/8277245.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/354252.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

npm 安装依赖遇到的问题

npm npm的服务器位于国外可能会影响安装 cnpm 淘宝团队做的国内镜像 // 安装 cnpm npm install cnpm -g --registryhttps://registry.npm.taobao.org // 查看版本 cnpm -v // 查 npm 的源 npm config get registry一、cnpm -v 在 cmd 中能识别&#xff0c;但是 VsCode 无法识别…

maven 父maven_Maven的鸟瞰图

maven 父maven我们每天要做的一件事是使用Maven通过发出诸如mvn install之类的构建命令来构建我们的项目。 然后&#xff0c;Maven查看我们项目的配置文件&#xff08;亲切地称为POM&#xff09;&#xff0c;神奇地找出要执行的操作&#xff0c;并且&#xff0c;嘿&#xff0c;…

mysql断网_断网的情况上如何访问本机的mysql

断网的情况下怎么访问本机的mysql我发现把网络断掉后mysql就不能访问了。使用phpmyadmin(http://localhost/phpmyadmin/index.php?)访问&#xff0c;输入用户名和密码后点击登陆&#xff0c;就会出现“#2002 Cannot log in to the MySQL server”错误。使用命令行登陆&#xf…

Py IO model

事件驱动模型 上节的问题&#xff1a; 协程&#xff1a;遇到IO操作就切换。 但什么时候切回去呢&#xff1f;怎么确定IO操作完了&#xff1f; 很多程序员可能会考虑使用“线程池”或“连接池”。“线程池”旨在减少创建和销毁线程的频率&#xff0c;其维持一定合理数量的线程&a…

Fiddler 扒取微信小程序的图片

安装 Fiddler http://www.downza.cn/soft/234727.html Tools-options配置 如果无法抓取到PC微信小程序 解决办法&#xff1a; 打开小程序&#xff0c;任务管理器找到小程序所在位置&#xff0c;删除文件内容 一般路径为\Tencent\WeChat\XPlugin\Plugins\WMPFRuntime 删除…

JLBH – Java延迟基准线束介绍

在这篇文章中&#xff1a; 什么是JLBH 我们为什么写JLBH JMH和JLBH之间的区别 快速入门指南 什么是JLBH&#xff1f; JLBH是可用于测量Java程序中的延迟的工具。 它具有以下功能&#xff1a; 旨在运行比微型基准测试更大的代码。 适用于使用异步活动&#xff08;如生产者…

mysql 5.7 mts_mysql5.7 中启用MTS后error log中大量Note日志分析

mysql5.7,启用基于logical_clock的多线程复制,发现error日志增长很快&#xff0c;查看日志发现大量关于多线程复制的Note级别日志。1234567891011121314152018-07-03T03:22:01.63837108:00 8941 [Note] Multi-threaded slave statistics for channel : seconds elapsed 298; e…

Nginx 怎么给一台服务器,配置两个域名?详细的解说+截图教程

一、 环境、条件准备 一台云服务器&#xff08;我的是腾讯的centos7&#xff09; 至少两个域名。&#xff08;我的是simuhunluo.xyz和simuhunluo.top。这两个域名之间没有任何关系&#xff0c;我是在阿里用两个账号分别注册的。&#xff09; 云服务器上面已经搭建了ngin…

extjs6 mvvm_ZK 6中的MVVM初探

extjs6 mvvmMVVM与MVC 在上一篇文章中&#xff0c;我们已经看到Ajax框架ZK如何采用CSS选择器启发的Controller来在View中连接UI组件并监听它们的事件。 在此ZK MVC模式下&#xff0c; View中的UI组件无需绑定到任何Controller方法或数据对象。 使用选择器模式作为将View状态和事…

多线程 调用 axis 报错_java笔记录(三、多线程)

1、进程和线程&#xff1a;进程&#xff1a;正在进行的程序。每一个进程执行都有一个执行顺序&#xff0c;该顺序是一个执行路径&#xff0c;或者叫一个控制单元。线程&#xff1a;进程内部的一条执行路径或者一个控制单元。两者的区别&#xff1a;一个进程至少有一个线程进程在…

使用PropertyPlaceholderConfigurer读取属性文件

1.简介 通常&#xff0c;当我们考虑将多个应用程序部署到生产环境之前在其中部署服务器时&#xff0c;可以在外部属性文件中配置特定于环境的参数 。 它可能是数据库详细信息&#xff0c;对于测试服务器和生产服务器而言&#xff0c;这是不同的。 因此最好选择将数据库配置文件…

第二天:Swift手势操控弹性按钮

参考链接:https://www.jianshu.com/p/f080ede0f3a8 1 import UIKit2 3 fileprivate let buttonH: CGFloat 2004 5 class ViewController: UIViewController, UIGestureRecognizerDelegate {6 7 IBOutlet weak var segmentControl: UISegmentedControl!8 var randomBtn…

ionic2 安装与cordova打包

1.安装&#xff1a; cnpm install -g cordova ionic ionic start name cd name cnpm install 2、环境配置&#xff1a; http://www.cnblogs.com/changyaoself/p/6544082.html 这里是具体配置。 测试环境&#xff1a; cordova platform list 如下才可以&#xff1a; 3、添加…

mysql vacuum_PostgreSQL DBA快速入门(四) - 体系架构

PostgreSQL在开源关系型数据库市场是最先进的数据库。他的第一个版本在1989年发布&#xff0c;从那时开始&#xff0c;他得到了很多扩展。根据db-enginers上的排名情况&#xff0c;PostgreSQL目前在数据库领域排名第四。 本篇博客&#xff0c;我们来讨论一下PostgreSQL的内部架…

总结mysql的基础语法_mysql 基础sql语法总结 (二)DML

二、DML(增、删、改)1)插入数据第一种写法&#xff1a;INSERT INTO 表名 (列名1&#xff0c;列名2&#xff0c;&#xff0c;......)VALUES(列值1&#xff0c;列值2&#xff0c;......)第二种写法&#xff1a;INSERT INTO 表名 VALUES(列值1&#xff0c;列值2&#xff0c;......…

提高团队协作效率

提高团队协作效率 分工合理&#xff0c;责任明确 团队是由个人组成的&#xff0c;团队中的个人往往经历不同、背景不同、性格有差异、水平有高低。在团队形成后、正式开工前&#xff0c;首先应该进行合理分工&#xff0c;要结合每个 人的特点和爱好&#xff0c;充分发挥出每个人…

Java中Array和ArrayList之间的9个区别

array和ArrayList都是Java中两个重要的数据结构&#xff0c;在Java程序中经常使用。 即使ArrayList在内部由数组支持&#xff0c;了解Java中的数组和ArrayList之间的差异对于成为一名优秀的Java开发人员也至关重要。 如果您知道相似点和不同点&#xff0c;则可以明智地决定何时…

vue 在已有的购买列表中(数据库返回的数据)修改商品数量

连续加班一个月 连续通宵三天 到最后还是少了一个功能 心碎 简介&#xff1a;一个生成好的商品列表&#xff08;数据库返回的数据&#xff09; 首先拿到我们需要渲染的数组 在data中定义 我是在测试的时候 直接写了两条数据 下面开始点击删除 点击添加是一样的代码 只不过加号…

python饼状图教程_Python数据可视化:饼状图的实例讲解

使用python实现论文里面的饼状图&#xff1a;原图&#xff1a;python代码实现&#xff1a;# # 饼状图# plot.figure(figsize(8,8))labels [uCanteen, uSupermarket, uDorm, uOthers]sizes [73, 21, 4, 2]colors [red, yellow, blue, green]explode (0.05, 0, 0, 0)patches,…

小看--单例设计模式

&#xff08;一&#xff09;单例设计描述 只要了解过设计模式的同学都会知道&#xff1a;单例设计模式&#xff0c;大家都知道单例设计模式是一种创建行的设计模式。既然是创建型&#xff0c;那么先来讲讲&#xff0c;对象的创建的过程吧。 --静态成员&#xff1a;静态成员在程…