程序猿成长之路之密码学篇-分组密码加密模式及IV(偏移量)的详解

Cipher.getInstance("AES/ECB/PKCS5Padding");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
在进行加解密编程的时候应该有很多小伙伴接触过以上的语句,但是大伙儿在编码过程中是否了解过ECB/CBC的含义、区别以及PKCS5Padding的含义?如果不清楚的话那么希望这篇文章可以帮到你们。

什么是分组密码?

分组密码就是按照固定长度的字符对明文加密/密文解密的一种加解密算法。常见的有DES、AES等。具体如下图所示
在这里插入图片描述

什么是IV(偏移量)?

可以理解为加解密过程中设置的可变变量,可以是时间戳、uuid也可以是其他随机值,目的是为了增加混乱度,降低被破译的风险。

什么是分组加密模式?

对于一般加解密(或ECB)而言,我们只是调用了加解密函数分组加密就完事了,但是如果遇到了重放攻击(多次发起同一请求),那么黑客在截获密文后可以较为轻松的按照分组进行解密,那么这时候就会对系统安全性造成威胁。为了防止这种情况的发生,我们就可以采取一定的措施去对分组密码进行轮次迭代处理,上述提到的ECB(电子密码本模式)/CBC(密文分组链接模式)就属于分组加密模式。此外还有CFB(密文反馈模式)等也属于分组加密模式。
下面我们来一一分析不同分组加密模式的含义以及各自的优缺点。

ECB(电子密码本模式)
在这里插入图片描述
过程/原理:
这种分组加密模式就属于最简单的不经过处理的分组加密模式,直接对明文或密文按组进行加密或解密得到结果。

优点:
-支持多线程异步处理,效率较高
-无需分组轮次迭代计算,计算量更小

缺点:
-安全性能较差,容易被攻破

CBC(密文分组链接模式)
在这里插入图片描述
过程/原理:
加密:
第一轮:生成初始化向量iv,与第一组明文分组异或运算后共同加密。
后续:拿上一轮CBC运算结果与当前分组明文异或运算后加密。
解密:
第一轮:生成初始化向量iv,先对第一组密文分组解密后再与初始化向量进行异或运算。
后续:先对当前密文分组解密后再与上一轮密文分组进行异或运算
加解密原理:
A异或B异或B = A
例如第一轮加密后的第一组密文 e1 = Ek(iv xor 第一组明文)
则第一轮解密后的第一组明文 d1 = (Ek’(第一组密文) xor iv) = (iv xor 第一组明文) xor iv = 第一组明文

优点:
-使用了iv作为随机变量,增加了破译的难度,使得每次针对同一明文加密后的结果不一致
-加密使用前一轮的输出作为后一轮的输入

缺点:
-增加了计算量,加大了计算开销

CFB(密文反馈模式)
在这里插入图片描述
过程/原理:
加密:
第一轮:生成初始化向量iv,先进行加密计算后与第一组明文分组进行异或运算。
后续:拿上一轮CFB运算结果先加密后与当前分组明文进行异或运算。
解密:
第一轮:生成初始化向量iv,先进行加密计算后与第一组密文分组进行异或运算。
后续:拿上一轮CFB运算结果先加密后与当前分组密文进行异或运算。
加解密原理:
A异或B异或B = A
例如第一轮加密后的第一组密文 e1 = Ek(iv) xor 第一组明文
则第一轮解密后的第一组明文 d1 = (Ek(iv) xor 第一组密文) = (Ek(iv) xor (Ek(iv) xor 第一组明文) ) = 第一组明文

优点:
-使用了iv作为随机变量,增加了破译的难度,使得每次针对同一明文加密后的结果不一致
-加密使用前一轮的输出作为后一轮的输入
-iv在分组加密算法中可以单独使用

缺点:
-增加了计算量,加大了计算开销

分组加密模式代码实现

注:如需要AES代码详见以下文章:
程序猿成长之路之密码学篇-AES算法解密详解及代码呈现 https://blog.csdn.net/qq_31236027/article/details/131206018

枚举类型

public enum EncryptMode {CBC("CBC"),CFB("CFB");private String name;private EncryptMode(String name) {this.setName(name);}public String getName() {return name;}public void setName(String name) {this.name = name;}
}

加密部分

/*** 分组加密(128位一组)【完整版】* @param text 明文* @param mode 加密模式(CFB、CBC)* @param iv 偏移量*/@Overridepublic String encrypt(String text, String iv, EncryptMode mode) {if(mode == null) {return encrypt(text);}String result = null;switch(mode) {case CBC: result = encryptCBC(text,iv); break;case CFB: result = encryptCFB(text,iv);break;default: result = encrypt(text);break;}return result;}/*** 分组加密(128位一组)(无iv【偏移量】版)* @param text 明文*/private String encrypt(String text) {StringBuilder sb = new StringBuilder();int textLen = text.length();//获取分组长度// DIV_LEN * CHAR_LEN = 128// 根据DIV_LEN进行分组,如CHAR_LEN=16位,那么就每8个字符一组int divLen = textLen % AESConstant.DIV_LEN == 0 ? textLen / AESConstant.DIV_LEN : (textLen / AESConstant.DIV_LEN + 1);//分组加密处理for (int i = 0; i < divLen; i++) {int startIndex = i * AESConstant.DIV_LEN;int endIndex = (startIndex + AESConstant.DIV_LEN) >= textLen ? textLen : (startIndex + AESConstant.DIV_LEN);String substr = text.substring(startIndex, endIndex);//尾部填充while(substr.length() < AESConstant.DIV_LEN) {substr += " ";}sb.append(EncodeUtil.binaryToHexStr(baseEncrypt(substr)).trim());}return new BASE64Encoder().encode(sb.toString().trim().getBytes());}/*** 分组加密(128位一组),(有iv【偏移量】CBC版,更安全)* * CBC特性* 1. 每一组分组的密文都依赖于上一组的结果* 2. 加入了iv偏移量使得每次加密执行后的结果都不一致* * @param text 明文* @param iv 偏移量*/private String encryptCBC(String text,String iv) {StringBuilder sb = new StringBuilder();int textLen = text.length();//获取分组长度// DIV_LEN * CHAR_LEN = 128// 根据DIV_LEN进行分组,如CHAR_LEN=16位【UNICODE】,那么就每8个字符一组int divLen = textLen % AESConstant.DIV_LEN == 0 ? textLen / AESConstant.DIV_LEN : (textLen / AESConstant.DIV_LEN + 1);// CFB加密初始化向量String encryptedPart = iv;//分组加密处理for (int i = 0; i < divLen; i++) {int startIndex = i * AESConstant.DIV_LEN;int endIndex = (startIndex + AESConstant.DIV_LEN) >= textLen ? textLen : (startIndex + AESConstant.DIV_LEN);String substr = text.substring(startIndex, endIndex);//尾部填充while(substr.length() < AESConstant.DIV_LEN) {substr += " ";}while(encryptedPart.length() < AESConstant.DIV_LEN) {encryptedPart += " ";}//CBC关键,需要拿明文与上一轮结果进行异或得到的结果共同加密作为下一轮的输入encryptedPart = EncodeUtil.binaryToStr(baseEncrypt(strXor(encryptedPart,substr)), 16);sb.append(encryptedPart);}//批量处理为16进制后base64运算String result = sb.toString().trim();result = EncodeUtil.strtoBinary(result, 16);result = EncodeUtil.binaryToHexStr(result);return new BASE64Encoder().encode(result.getBytes());}/*** 分组加密(128位一组),(有iv【偏移量】CFB版,更安全)* * CFB特性* * @param text 明文* @param iv 偏移量*/private String encryptCFB(String text,String iv) {StringBuilder sb = new StringBuilder();int textLen = text.length();//获取分组长度// DIV_LEN * CHAR_LEN = 128// 根据DIV_LEN进行分组,如CHAR_LEN=16位【UNICODE】,那么就每8个字符一组int divLen = textLen % AESConstant.DIV_LEN == 0 ? textLen / AESConstant.DIV_LEN : (textLen / AESConstant.DIV_LEN + 1);// CFB加密初始化向量String encryptedPart = iv;//分组加密处理for (int i = 0; i < divLen; i++) {int startIndex = i * AESConstant.DIV_LEN;int endIndex = (startIndex + AESConstant.DIV_LEN) >= textLen ? textLen : (startIndex + AESConstant.DIV_LEN);String substr = text.substring(startIndex, endIndex);//尾部填充while(substr.length() < AESConstant.DIV_LEN) {substr += " ";}while(encryptedPart.length() < AESConstant.DIV_LEN) {encryptedPart += " ";}//CFB关键,需要拿明文与上一轮加密结果进行异或得到的结果作为下一轮的输入encryptedPart = strXor(EncodeUtil.binaryToStr(baseEncrypt(encryptedPart), 16),substr);sb.append(encryptedPart);}//批量处理为16进制后base64运算String result = sb.toString().trim();result = EncodeUtil.strtoBinary(result, 16);result = EncodeUtil.binaryToHexStr(result);return new BASE64Encoder().encode(result.getBytes());}

解密部分

	/*** 分组解密(128位一组)【完整版】* @param encrytedText 密文* @param mode 加密模式(CFB、CBC)* @param iv 偏移量*/@Overridepublic String decrypt(String encrytedText, String iv, EncryptMode mode) {if(mode == null) {return decrypt(encrytedText);}String result = null;switch(mode) {case CBC: result = decryptCBC(encrytedText,iv); break;case CFB: result = decryptCFB(encrytedText,iv);break;default: result = decrypt(encrytedText);break;}return result;}/*** 分组解密* @param encrytedText 密文*/private String decrypt(String encrytedText) {try {//base64解码byte[] bytes = new BASE64Decoder().decodeBuffer(encrytedText);String str = new String(bytes,Charset.forName("UTF8"));int textLen = str.length();StringBuilder sb = new StringBuilder();int divLen = textLen < 32 ? 1 : (int)(Math.ceil(textLen/(4*8*1.0))); //因为加密后会自动填充所以长度必为字符长度的倍数(HEX 4位)//分组解密for (int i = 0; i< divLen; i++) {int startIndex = i * (4*8);int endIndex = (startIndex + (4*8));String temp = str.substring(startIndex, endIndex);sb.append(baseDecrypt(temp));}return sb.toString();} catch (IOException e) {e.printStackTrace();}return null;}/*** 分组解密(128位一组),(有iv【偏移量】CBC版)* @param encrytedText 密文* @param iv 偏移量* @return 明文*/private String decryptCBC(String encrytedText,String iv) {try {//base64解码byte[] bytes = new BASE64Decoder().decodeBuffer(encrytedText);String str = new String(bytes,Charset.forName("UTF8"));int textLen = str.length();StringBuilder sb = new StringBuilder();int divLen = textLen < 32 ? 1 : (int)(Math.ceil(textLen/(4*8*1.0))); //因为加密后会自动填充所以长度必为字符长度的倍数(HEX 4位)//CFB解密初始化向量String decryptedPart = iv;//分组解密for (int i = 0; i< divLen; i++) {int startIndex = i * (4*8);int endIndex = (startIndex + (4*8));String temp = str.substring(startIndex, endIndex);//尾部填充while(decryptedPart.length() < AESConstant.DIV_LEN) {decryptedPart += " ";}//转换成16位的字符,方便strXor运算sb.append(strXor(baseDecrypt(temp),decryptedPart));//位数转换decryptedPart = EncodeUtil.binaryToStr(EncodeUtil.toBinary(temp, EncodeRadix.HEX), 16);}return sb.toString();} catch (IOException e) {e.printStackTrace();}return null;}/*** 分组解密(128位一组),(有iv【偏移量】CFB版)* @param encrytedText 密文* @param iv 偏移量* @return 明文*/private String decryptCFB(String encrytedText,String iv) {try {//base64解码byte[] bytes = new BASE64Decoder().decodeBuffer(encrytedText);String str = new String(bytes,Charset.forName("UTF8"));int textLen = str.length();StringBuilder sb = new StringBuilder();int divLen = textLen < 32 ? 1 : (int)(Math.ceil(textLen/(4*8*1.0))); //因为加密后会自动填充所以长度必为字符长度的倍数(HEX 4位)//CFB解密初始化向量(转为16进制方便计算String decryptedPart = iv;//分组解密for (int i = 0; i< divLen; i++) {int startIndex = i * (4*8);int endIndex = (startIndex + (4*8));String temp = str.substring(startIndex, endIndex);//转换成16位的字符,方便strXor运算temp = EncodeUtil.binaryToStr(EncodeUtil.toBinary(temp, EncodeRadix.HEX), 16);//尾部填充while(decryptedPart.length() < AESConstant.DIV_LEN) {decryptedPart += " ";}//转换成16位的字符,方便strXor运算sb.append(strXor(EncodeUtil.binaryToStr(baseEncrypt(decryptedPart), 16),temp));decryptedPart = temp;}return sb.toString();} catch (IOException e) {e.printStackTrace();}return null;}

运行代码

public static void main(String[] args) {AesUtil util = new AesUtil();//偏移量(8个字符,每个字符16位)String iv = UUID.randomUUID().toString().substring(0,8);//CFB(密文反馈模式)String encrytedStr = util.encrypt("{\"code\":200,\"message\":\"成功!\",\"data\":{\"id\":\"2103813902831\",\"name\":\"章鱼哥是我啊\",\"gender\":\"男\"}}",iv,EncryptMode.CFB);System.out.println("encrytedStr = " + encrytedStr);System.out.println("result= " + util.decrypt(encrytedStr,iv,EncryptMode.CFB));}

最后是运行截图
在这里插入图片描述
————————————————PKCS5Padding后续再讲————————————————————

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/33746.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Selenium之css怎么实现元素定位?

世界上最远的距离大概就是明明看到一个页面元素站在那里&#xff0c;但是我却定位不到&#xff01;&#xff01; Selenium定位元素的方法有很多种&#xff0c;像是通过id、name、class_name、tag_name、link_text等等&#xff0c;但是这些方法局限性太大&#xff0c; 随着自动…

指针进阶大冒险:解锁C语言中的奇妙世界!

目录 引言 第一阶段&#xff1a;&#x1f50d; 独特的字符指针 什么是字符指针&#xff1f; 字符指针的用途 演示&#xff1a;使用字符指针拷贝字符串 字符指针与字符串常量 小试牛刀 第二阶段&#xff1a;&#x1f3af; 玩转指针数组 指针数组是什么&#xff1f; 指针…

[SpringBoot3]基础篇

二、SpringBoot基础篇 2.1什么是SpringBoot SpringBoot是目前流行的微服务框架&#xff0c;倡导“约定优于配置”&#xff0c;其目的是用来简化新Spring应用的初始化搭建以及开发过程。SpringBoot提供了很多核心的功能&#xff0c;比如自动化配置starter&#xff08;启动器&a…

策略模式【Strategy Pattern】

刘备要到江东娶老婆了&#xff0c;走之前诸葛亮给赵云&#xff08;伴郎&#xff09;三个锦囊妙计&#xff0c;说是按天机拆开解决棘手问题&#xff0c; 嘿&#xff0c;还别说&#xff0c;真是解决了大问题&#xff0c;搞到最后是周瑜陪了夫人又折兵呀&#xff0c;那咱们先看看…

http、https笔记

目录 HTTP 基本概念状态码&#xff1a;get和post的区别&#xff1a;http 常⻅字段&#xff1a;http的缺点&#xff1a; HTTP/1.1HTTP/3HTTPSHTTPS和HTTP区别对称加密和⾮对称加密⾮对称加密 HTTP 基本概念 状态码&#xff1a; 1xx 中间状态&#xff0c;比如post的continue 20…

【设计模式】抽象工厂模式

抽象工厂模式&#xff08;Abstract Factory Pattern&#xff09;是围绕一个超级工厂创建其他工厂。该超级工厂又称为其他工厂的工厂。这种类型的设计模式属于创建型模式&#xff0c;它提供了一种创建对象的最佳方式。 在抽象工厂模式中&#xff0c;接口是负责创建一个相关对象…

vim学习笔记(致敬vim作者)

vim cheat sheet 30. vim 删除大法 vim 删除某个字符之后改行的其他的字符&#xff1f;删除某行之后的其他行&#xff1f;删除某个字符之后的其他字符&#xff1f;【1】删除单个字符&#xff1f; 跳到要删除的字符位置 按下d键然后按下shift 4键 【2】删除某行之后的其他行…

【CheatSheet】Python、R、Julia数据科学编程极简入门

《Python、R、Julia数据科学编程极简入门》PDF版&#xff0c;是我和小伙伴一起整理的备忘清单&#xff0c;帮助大家10分钟快速入门数据科学编程。 另外&#xff0c;最近 TIOBE 公布了 2023 年 8 月的编程语言排行榜。 Julia 在本月榜单中实现历史性突破&#xff0c;成功跻身 …

构建之法 - 软件工程实践教学:一线教师的13问

福州大学单红老师的软工课程总结 2020春&#xff0c;不一样的学期不一样的软工实践 单红⽼师在总结中&#xff0c;提出了13条疑惑&#xff0c;《构建之法》的作者邹欣⽼师就单红⽼师提出的每⼀条疑惑&#xff0c;给出了⾃⼰的思考&#xff0c;与他进⾏探讨交流。欢迎你也来参与…

[保研/考研机试] KY3 约数的个数 清华大学复试上机题 C++实现

题目链接&#xff1a; KY3 约数的个数 https://www.nowcoder.com/share/jump/437195121691716950188 描述 输入n个整数,依次输出每个数的约数的个数 输入描述&#xff1a; 输入的第一行为N&#xff0c;即数组的个数(N<1000) 接下来的1行包括N个整数&#xff0c;其中每个…

pytest fixture 高级使用

一、fixture中调用fixture 举例&#xff1a; 输出&#xff1a; 说明&#xff1a;登录fixture 作为参数传递到登出方法中&#xff0c;登录方法的返回值就可以被登出方法使用 二、在fixture中多参数的传递&#xff08;通过被调用函数传参&#xff09; 举例&#xff1a; 输出&a…

目标检测YOLOv3基于DarkNet53模型测试-笔记

目标检测YOLOv3基于DarkNet53模型测试-笔记 预测和试测结果&#xff1a; 预测代码如下所示&#xff1a; testInsects.py #YOLOv3网模型测试-单图片文件测试并显示测试结果 import time import os import paddle import numpy as np import cv2 import random from PIL impor…

【24择校指南】北方工业大学计算机考研考情分析

北方工业大学(B-) 考研难度&#xff08;☆☆&#xff09; 内容&#xff1a;23考情概况&#xff08;拟录取和复试分数人数统计&#xff09;、院校概况、23专业目录、23复试详情、23各科目和各专业考情分析。 正文1720字&#xff0c;预计阅读&#xff1a;5分钟。 2023考情概况…

竞赛项目 车位识别车道线检测 - python opencv

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满分5分) …

实现跨域的几种方式

原理 前后端的分离导致了跨域的产生 跨域的三要素&#xff1a;协议 域名 端口 三者有一个不同即产生跨域 例如&#xff1a; http://www.csdn.com https://www.csdn.com 由于协议不同&#xff0c;端口不同而产生跨域 注&#xff1a;http的默认端口80&#xff0c;https的默…

Android应用开发(37)LTPO帧率测试基于Surfaceview(暂存)

Android应用开发学习笔记——目录索引 参考android官网&#xff1a; Frame rate | Android media | Android Developers多重刷新率 | Android 开源项目 | Android Open Source ProjectWindowManager.LayoutParams | Android Developers 目前市面上旗舰手机基本都是…

ad+硬件每日学习十个知识点(26)23.8.6 (DCDC的降压电路、升压电路、降压-升压电路,同步整流,选型考虑同步、隔离)

文章目录 1.DCDC的降压原理2.DCDC的升压原理3.DCDC的升压和降压原理4.什么是肖特基二极管造成的死区电压&#xff1f;5.MOS管有死区电压么&#xff1f;6.DCDC的同步整流&#xff08;用MOS管取代整流二极管&#xff0c;避免死区电压的影响&#xff09;7.DCDC选型——同步与非同步…

近地面无人机植被定量遥感与生理参数反演技术

遥感&#xff08;RS-Remote Sensing&#xff09;——不接触物体本身&#xff0c;用传感器收集目标物的电磁波信息&#xff0c;经处理、分析后&#xff0c;识别目标物&#xff0c;揭示其几何、物理性质和相互关系及其变化规律的现代科学技术。 换言之&#xff0c;即是“遥远的感…

一文读懂什么是Byzer

目录 一、什么是Byzer? 二、Byzer特性 2.1 语法特性 2.2 数据的管理特性 2.3 支持自定义函数拓展Byzer语法 三、Byzer有哪些功能&#xff1f; 3.1 Byzer-Lang语言特性 3.1.1强大的数据处理能力 3.1.2内置机器学习算法 3.2 Byzer-Lang支持权限控制 3.3 Byzer-LLM拓展…

【工程优化问题】基于鲸鱼、萤火虫、灰狼优化算法的张力、压缩弹簧设计问题研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…