这是一个解决方案。
整理训练数据。然后对验证数据使用searchsorted。import pandas as pd
import numpy as np
# Generate Dummy Data
df_train = pd.DataFrame({'Values': 1000*np.random.rand(15712)})
#Sort Data
df_train = df_train.sort_values('Values')
# Calculating Rank and Rank_Pct for demo purposes
#but note that it is not needed for the solution
# The ranking of the validation data below does not depend on this
df_train['Rank'] = df_train.rank()
df_train['Rank_Pct']= df_train.Values.rank(pct=True)
# Demonstrate how Rank Percentile is calculated
# This gives the same value as .rank(pct=True)
pct_increment = 1./len(df_train)
df_train['Rank_Pct_Manual'] = df_train.Rank*pct_increment
df_train.head()
Values Rank Rank_Pct Rank_Pct_Manual
2724 0.006174 1.0 0.000064 0.000064
3582 0.016264 2.0 0.000127 0.000127
5534 0.095691 3.0 0.000191 0.000191
944 0.141442 4.0 0.000255 0.000255
7566 0.161766 5.0 0.000318 0.000318
现在使用searchsorted获取验证数据的秩比# Generate Dummy Validation Data
df_validation = pd.DataFrame({'Values': 1000*np.random.rand(1000)})
# Note searchsorted returns array index.
# In sorted list rank is the same as the array index +1
df_validation['Rank_Pct'] = (1 + df_train.Values.searchsorted(df_validation.Values))*pct_increment
以下是最终df_验证数据帧的前几行:print df_validation.head()
Values Rank_Pct
0 307.378334 0.304290
1 744.247034 0.744208
2 669.223821 0.670825
3 149.797030 0.145621
4 317.742713 0.314218