消息队列kafka及zookeeper机制

  • 一、zookeeper
    • 1.1 zookeeper简介
    • 1.2 zookeeper工作机制
    • 1.3 Zookeeper特点
    • 1.4 Zookeeper 数据结构
    • 1.5 Zookeeper 应用场景
      • 1.5.1 统一命名服务
      • 1.5.2 统一配置管理
      • 1.5.3 统一集群管理
      • 1.5.4 服务器动态上下线
      • 1.5.5 软负载均衡
    • 1.6 Zookeeper 选举机制
      • 1.6.1 第一次启动选举机制
      • 1.6.2 非第一次启动选举
  • 二、部署 Zookeeper 集群
    • 2.1 安装前准备
    • 2.2 安装 Zookeeper
  • 三、消息队列概述
    • 3.1 为什么需要消息队列(MQ)
    • 3.2 使用消息队列的好处
      • (1)解耦
      • (2)可恢复性
      • (3)缓冲
      • (4)灵活性 & 峰值处理能力
      • (5)异步通信
    • 3.3 消息队列的两种模式
  • 四、kafka概述
    • 4.1 kafka 定义
    • 4.2 kafka 简介
    • 4.3 Kafka 的特性
      • (1)高吞吐量、低延迟
      • (2)可扩展性
      • (3)持久性、可靠性
      • (4)容错性
      • (5)高并发
    • 4.4 Kafka 系统架构
      • (1)Broker
      • (2)Topic(主题)
      • (3)Partition(分区,实现数据分片)
        • Partation 数据路由规则
        • 注意
        • broker、topic、partition三者的关系
        • 分区的原因
      • (4)Replica(副本)
      • (5)Leader
      • (6)Follower
      • (7)Producer
      • (8)Consumer
      • (9)Consumer Group(CG)
      • (10)offset 偏移量
      • (11)Zookeeper
    • 4.5 kafka 架构流程
  • 五、部署 kafka 集群
    • 实验环境
    • 5.1 下载安装包
    • 5.2 安装 Kafka
    • 5.3 Kafka 命令行操作

一、zookeeper

1.1 zookeeper简介

Zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目。

1.2 zookeeper工作机制

Zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将负责通知已经在Zookeeper上注册的那些观察者做出相应的反应。

也就是说 Zookeeper = 文件系统 + 通知机制。

1、每个服务端上线时需要到 zookeeper 集群注册信息

2、客户端从 zookeeper 集群获取在线服务端信息列表并监听

3、服务端上线下线时,zookeeper 需要更新列表信息并通知客户端

4、客户端接收到通知重新获取 zookeeper 在线服务器列表
在这里插入图片描述

1.3 Zookeeper特点

① Zookeeper:一个领导者(Leader),多个跟随者(Follower)组成的集群。

② Zookeepe集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。所以Zookeeper适合安装奇数台服务器。

③ 全局数据一致:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的。

④ 更新请求顺序执行,来自同一个Client的更新请求按其发送顺序依次执行,即先进先出。

⑤ 数据更新原子性,一次数据更新要么成功,要么失败。

⑥ 实时性,在一定时间范围内,Client能读到最新数据。

1.4 Zookeeper 数据结构

ZooKeeper数据模型的结构与Linux文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。每一个ZNode默认能够存储1MB的数据,每个ZNode都可以通过其路径唯一标识。

1.5 Zookeeper 应用场景

提供的服务包括:统一命名服务、统一配置管理、统一集群管理、服务器节点动态上下线、软负载均衡等。

1.5.1 统一命名服务

在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。例如:IP不容易记住,而域名容易记住。

1.5.2 统一配置管理

(1)分布式环境下,配置文件同步非常常见。一般要求一个集群中,所有节点的配置信息是一致的,比如Kafka集群。对配置文件修改后,希望能够快速同步到各个节点上,以达到数据的一致性。

(2)配置管理可交由ZooKeeper实现。可将配置信息写入ZooKeeper上的一个Znode。各个客户端服务器监听这个Znode。一旦 Znode中的数据被修改,ZooKeeper将通知各个客户端服务器。

1.5.3 统一集群管理

(1)分布式环境中,实时掌握每个节点的状态是必要的。可根据节点实时状态做出一些调整。

(2)ZooKeeper可以实现实时监控节点状态变化。可将节点信息写入ZooKeeper上的一个ZNode。监听这个ZNode可获取它的实时状态变化。

1.5.4 服务器动态上下线

客户端能实时洞察到服务器上下线的变化。

1.5.5 软负载均衡

在Zookeeper中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求。

1.6 Zookeeper 选举机制

1.6.1 第一次启动选举机制

假设有5台服务器:

(1)服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票,不够半数以上(3票),选举无法完成,服务器1状态保持为LOOKING;

(2)服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的myid比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成,服务器1,2状态保持LOOKING。

(3)服务器3启动,发起一次选举。由于服务器3的 myid 比服务器1和服务器2都大,服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。服务器1,2更改状态为FOLLOWING,服务器3更改状态为LEADING;

(4)服务器4启动,发起一次选举。此时服务器1,2,3已经不是LOOKING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息为服务器3,并更改状态为FOLLOWING;

(5)服务器5启动,和服务器4一样更改状态为FOLLOWING。

1.6.2 非第一次启动选举

1、当ZooKeeper 集群中的一台服务器出现以下两种情况之一时,就会开始进入Leader选举:

(1)服务器初始化启动。

(2)服务器运行期间无法和Leader保持连接。

2、而当一台机器进入Leader选举流程时,当前集群也可能会处于以下两种状态:

(1)集群中本来就已经存在一个Leader。

  • 对于已经存在Leader的情况,机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器来说,仅仅需要和 Leader机器建立连接,并进行状态同步即可。

(2)集群中确实不存在Leader。

  • 假设ZooKeeper由5台服务器组成,SID分别为1、2、3、4、5,ZXID分别为8、8、8、7、7,并且此时SID为3的服务器是Leader。某一时刻,3和5服务器出现故障,因此开始进行Leader选举。
  • 选举Leader规则:
    1. EPOCH大的直接胜出
    2. EPOCH相同,事务id大的胜出
    3. 事务id相同,服务器id大的胜出

补充:

  • SID:服务器ID。用来唯一标识一台ZooKeeper集群中的机器,每台机器不能重复,和myid一致。
  • ZXID:事务ID。ZXID是一个事务ID,用来标识一次服务器状态的变更。在某一时刻,集群中的每台机器的ZXID值不一定完全一致,这和ZooKeeper服务器对于客户端“更新请求”的处理逻辑速度有关。
  • Epoch:每个Leader任期的代号。没有Leader时同一轮投票过程中的逻辑时钟值是相同的。每投完一次票这个数据就会增加。

二、部署 Zookeeper 集群

准备 3 台服务器做 Zookeeper 集群

192.168.147.100		zookeeper01
192.168.147.101		zookeeper02
192.168.147.102		zookeeper03

2.1 安装前准备

//关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
//安装 JDK
yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel
java -version

在这里插入图片描述

//下载安装包
官方下载地址:https://archive.apache.org/dist/zookeeper/cd /opt
wget https://archive.apache.org/dist/zookeeper/zookeeper-3.5.7/apache-zookeeper-3.5.7-bin.tar.gz

在这里插入图片描述

2.2 安装 Zookeeper

cd /opt
tar -zxvf apache-zookeeper-3.5.7-bin.tar.gz
mv apache-zookeeper-3.5.7-bin /usr/local/zookeeper-3.5.7

在这里插入图片描述

//修改配置文件
cd /usr/local/zookeeper-3.5.7/conf/
cp zoo_sample.cfg zoo.cfgvim zoo.cfg
tickTime=2000   #通信心跳时间,Zookeeper服务器与客户端心跳时间,单位毫秒
initLimit=10    #Leader和Follower初始连接时能容忍的最多心跳数(tickTime的数量),这里表示为10*2s
syncLimit=5     #Leader和Follower之间同步通信的超时时间,这里表示如果超过5*2s,Leader认为Follwer死掉,并从服务器列表中删除Follwer
dataDir=/usr/local/zookeeper-3.5.7/data      修改,指定保存Zookeeper中的数据的目录,目录需要单独创建
dataLogDir=/usr/local/zookeeper-3.5.7/logs   添加,指定存放日志的目录,目录需要单独创建
clientPort=2181   #客户端连接端口
#添加集群信息
server.1=192.168.147.100:3188:3288
server.2=192.168.147.101:3188:3288
server.3=192.168.147.102:3188:3288-------------------------------------------------------------------------------------server.A=B:C:D
●A是一个数字,表示这个是第几号服务器。集群模式下需要在zoo.cfg中dataDir指定的目录下创建一个文件myid,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。
●B是这个服务器的地址。
●C是这个服务器Follower与集群中的Leader服务器交换信息的端口。●D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。

在这里插入图片描述
在这里插入图片描述

//拷贝配置好的 Zookeeper 配置文件到其他机器上
scp /usr/local/zookeeper-3.5.7/conf/zoo.cfg 192.168.147.101:/usr/local/zookeeper-3.5.7/conf/
scp /usr/local/zookeeper-3.5.7/conf/zoo.cfg 192.168.147.102:/usr/local/zookeeper-3.5.7/conf/
//在每个节点上创建数据目录和日志目录
mkdir /usr/local/zookeeper-3.5.7/data
mkdir /usr/local/zookeeper-3.5.7/logs

在这里插入图片描述

//在每个节点的dataDir指定的目录下创建一个 myid 的文件
echo 1 > /usr/local/zookeeper-3.5.7/data/myid
echo 2 > /usr/local/zookeeper-3.5.7/data/myid
echo 3 > /usr/local/zookeeper-3.5.7/data/myid

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

//配置 Zookeeper 启动脚本
vim /etc/init.d/zookeeper
#!/bin/bash
#chkconfig:2345 20 90
#description:Zookeeper Service Control Script
ZK_HOME='/usr/local/zookeeper-3.5.7/apache-zookeeper-3.5.7-bin'
case $1 in
start)echo "---------- zookeeper 启动 ------------"$ZK_HOME/bin/zkServer.sh start
;;
stop)echo "---------- zookeeper 停止 ------------"$ZK_HOME/bin/zkServer.sh stop
;;
restart)echo "---------- zookeeper 重启 ------------"$ZK_HOME/bin/zkServer.sh restart
;;
status)echo "---------- zookeeper 状态 ------------"$ZK_HOME/bin/zkServer.sh status
;;
*)echo "Usage: $0 {start|stop|restart|status}"
esac

在这里插入图片描述

//	设置开机自启
chmod +x /etc/init.d/zookeeper
chkconfig --add zookeeper

在这里插入图片描述

//分别启动 Zookeeper
service zookeeper start
//查看当前状态
service zookeeper status

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

三、消息队列概述

3.1 为什么需要消息队列(MQ)

主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发 too many connection 错误,引发雪崩效应。

我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队列常应用于异步处理,流量削峰,应用解耦,消息通讯等场景。

当前比较常见的 MQ 中间件有 ActiveMQ、RabbitMQ、RocketMQ、Kafka 等。

3.2 使用消息队列的好处

(1)解耦

允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

(2)可恢复性

系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

(3)缓冲

有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。

(4)灵活性 & 峰值处理能力

在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

(5)异步通信

很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

3.3 消息队列的两种模式

(1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)
消息生产者生产消息发送到消息队列中,然后消息消费者从消息队列中取出并且消费消息。消息被消费以后,消息队列中不再有存储,所以消息消费者不可能消费到已经被消费的消息。消息队列支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。

在这里插入图片描述

(2)发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)
消息生产者(发布)将消息发布到 topic 中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到 topic 的消息会被所有订阅者消费。

观察者(实时观察消费者消费能力即处理数据能力)观察整个消息队列,根据消费者的能力配置,发送数据给消费者

发布/订阅模式是定义对象间一种一对多的依赖关系,使得每当一个对象(目标对象)的状态发生改变,则所有依赖于它的对象(观察者对象)都会得到通知并自动更新。

在这里插入图片描述

四、kafka概述

4.1 kafka 定义

Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域。

4.2 kafka 简介

Kafka 是最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于 Zookeeper 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写,Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目。

4.3 Kafka 的特性

(1)高吞吐量、低延迟

Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力。

(2)可扩展性

kafka 集群支持热扩展。

(3)持久性、可靠性

消息被持久化到本地磁盘,并且支持数据备份防止数据丢失。

(4)容错性

允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败)。

(5)高并发

支持数千个客户端同时读写。

4.4 Kafka 系统架构

(1)Broker

一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic。

(2)Topic(主题)

可以理解为一个队列,生产者和消费者面向的都是一个 topic。

类似于数据库的表名或者 ES 的 index。

物理上不同 topic 的消息分开存储。

(3)Partition(分区,实现数据分片)

  • 为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列。Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序。
  • 每个 topic 至少有一个 partition,当生产者产生数据的时候,会根据分配策略选择分区,然后将消息追加到指定的分区的队列末尾。

Partation 数据路由规则

  1. 指定了 patition,则直接使用;
  2. 未指定 patition 但指定 key(相当于消息中某个属性),通过对 key 的 value 进行 hash 取模,选出一个 patition;
  3. patition 和 key 都未指定,使用轮询选出一个 patition。

注意

  • 每条消息都会有一个自增的编号,用于标识消息的偏移量,标识顺序从 0 开始。
  • 每个 partition 中的数据使用多个 segment 文件存储。
  • 如果 topic 有多个 partition,消费数据时就不能保证数据的顺序。严格保证消息的消费顺序的场景下(例如商品秒杀、 抢红包),需要将 partition 数目设为 1。

broker、topic、partition三者的关系

  • broker 存储 topic 的数据。如果某 topic 有 N 个 partition,集群有 N 个 broker,那么每个 broker 存储该 topic 的一个 partition。
  • 如果某 topic 有 N 个 partition,集群有 (N+M) 个 broker,那么其中有 N 个 broker 存储 topic 的一个 partition, 剩下的 M 个 broker 不存储该 topic 的 partition 数据。
  • 如果某 topic 有 N 个 partition,集群中 broker 数目少于 N 个,那么一个 broker 存储该 topic 的一个或多个 partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致 Kafka 集群数据不均衡。

分区的原因

  • 方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
  • 可以提高并发,因为可以以Partition为单位读写了。

(4)Replica(副本)

副本,为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失,且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower。

(5)Leader

每个 partition 有多个副本,其中有且仅有一个作为 Leader,Leader 是当前负责数据的读写的 partition。

(6)Follower

  • Follower 跟随 Leader,所有写请求都通过 Leader 路由,数据变更会广播给所有 Follower,Follower 与 Leader 保持数据同步。Follower 只负责备份,不负责数据的读写。
  • 如果 Leader 故障,则从 Follower 中选举出一个新的 Leader。
  • 当 Follower 挂掉、卡住或者同步太慢,Leader 会把这个 Follower 从 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合) 列表中删除,重新创建一个Follower。

(7)Producer

  • 生产者即数据的发布者,该角色将消息 push 发布到 Kafka 的 topic 中。
  • broker 接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的 segment 文件中。
  • 生产者发送的消息,存储到一个 partition 中,生产者也可以指定数据存储的 partition。

(8)Consumer

消费者可以从 broker 中 pull 拉取数据。消费者可以消费多个 topic 中的数据。

(9)Consumer Group(CG)

  • 消费者组,由多个 consumer 组成。
  • 所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。可为每个消费者指定组名,若不指定组名则属于默认的组。
  • 将多个消费者集中到一起去处理某一个 Topic 的数据,可以更快的提高数据的消费能力。
  • 消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费,防止数据被重复读取。
  • 消费者组之间互不影响。

(10)offset 偏移量

  • 可以唯一的标识一条消息。
  • 偏移量决定读取数据的位置,不会有线程安全的问题,消费者通过偏移量来决定下次读取的消息(即消费位置)。
  • 消息被消费之后,并不被马上删除,这样多个业务就可以重复使用 Kafka 的消息。
  • 某一个业务也可以通过修改偏移量达到重新读取消息的目的,偏移量由用户控制。
  • 消息最终还是会被删除的,默认生命周期为 1 周(7*24小时)。

(11)Zookeeper

  • Kafka 通过 Zookeeper 来存储集群的 meta 信息。
  • 由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。
  • Kafka 0.9 版本之前,consumer 默认将 offset 保存在 Zookeeper 中;从 0.9 版本开始,consumer 默认将 offset 保存在 Kafka 一个内置的 topic 中,该 topic 为 __consumer_offsets。
  • 也就是说,zookeeper的作用就是,生产者push数据到kafka集群,就必须要找到kafka集群的节点在哪里,这些都是通过zookeeper去寻找的。消费者消费哪一条数据,也需要zookeeper的支持,从zookeeper获得offset,offset记录上一次消费的数据消费到哪里,这样就可以接着下一条数据进行消费。

4.5 kafka 架构流程

在这里插入图片描述

  1. 生产者生产数据传给broker即kafka服务器集群

  2. kafka集群将数据存储在topic主题中,每个topic主题中有多个分片(分片做了备份在其他topic)

  3. 分片中存储数据,kafka集群注册在zookeeper中,zookeeper通知消费者kafka服务器在线列表

  4. 消费者收到zookeeper通知的在线列表,从broker中拉取数据

  5. 消费者保存偏移量到zookeeper中,以便记录自己宕机消费到什么地方

五、部署 kafka 集群

实验环境

三台服务器已搭建好 Zookeeper 集群:
192.168.147.100
192.168.147.101
192.168.147.102

5.1 下载安装包

官方下载地址:http://kafka.apache.org/downloads.htmlcd /opt
wget https://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.7.1/kafka_2.13-2.7.1.tgz

5.2 安装 Kafka

cd /opt/
tar zxvf kafka_2.13-2.7.1.tgz
mv kafka_2.13-2.7.1 /usr/local/kafka

在这里插入图片描述

//修改配置文件
cd /usr/local/kafka/config/
cp server.properties{,.bak}vim server.properties
broker.id=0    ●21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 broker.id=1、broker.id=2
listeners=PLAINTEXT://192.168.147.100:9092    ●31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
num.network.threads=3    #42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
num.io.threads=8         #45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数
socket.send.buffer.bytes=102400       #48行,发送套接字的缓冲区大小
socket.receive.buffer.bytes=102400    #51行,接收套接字的缓冲区大小
socket.request.max.bytes=104857600    #54行,请求套接字的缓冲区大小
log.dirs=/usr/local/kafka/logs        #60行,kafka运行日志存放的路径,也是数据存放的路径
num.partitions=1    #65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖
num.recovery.threads.per.data.dir=1    #69行,用来恢复和清理data下数据的线程数量
log.retention.hours=168    #103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除
log.segment.bytes=1073741824    #110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件
zookeeper.connect=192.168.147.100:2181,192.168.147.101:2181,192.168.147.102:2181    ●123行,配置连接Zookeeper集群地址

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

//修改环境变量
vim /etc/profile
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/binsource /etc/profile

在这里插入图片描述

//配置 Zookeeper 启动脚本
vim /etc/init.d/kafka
#!/bin/bash
#chkconfig:2345 22 88
#description:Kafka Service Control Script
KAFKA_HOME='/usr/local/kafka/'
case $1 in
start)echo "---------- Kafka 启动 ------------"${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server.properties
;;
stop)echo "---------- Kafka 停止 ------------"${KAFKA_HOME}/bin/kafka-server-stop.sh
;;
restart)$0 stop$0 start
;;
status)echo "---------- Kafka 状态 ------------"count=$(ps -ef | grep kafka | egrep -cv "grep|$$")if [ "$count" -eq 0 ];thenecho "kafka is not running"elseecho "kafka is running"fi
;;
*)echo "Usage: $0 {start|stop|restart|status}"
esac

在这里插入图片描述

//设置开机自启
chmod +x /etc/init.d/kafka
chkconfig --add kafka//分别启动 Kafka
service kafka start

在这里插入图片描述

5.3 Kafka 命令行操作

//创建topic
kafka-topics.sh --create --zookeeper 192.168.147.100:2181,192.168.147.101:2181,192.168.147.102:2181 --replication-factor 2 --partitions 3 --topic test--zookeeper:定义 zookeeper 集群服务器地址,如果有多个 IP 地址使用逗号分割,一般使用一个 IP 即可
--replication-factor:定义分区副本数,1 代表单副本,建议为 2 
--partitions:定义分区数 
--topic:定义 topic 名称

在这里插入图片描述

//查看当前服务器中的所有 topic
kafka-topics.sh --list --zookeeper 192.168.147.100:2181,192.168.147.101:2181,192.168.147.102:2181

在这里插入图片描述

//查看某个 topic 的详情
kafka-topics.sh  --describe --zookeeper 192.168.147.100:2181,192.168.147.101:2181,192.168.147.102:2181

在这里插入图片描述

//发布消息
kafka-console-producer.sh --broker-list 192.168.147.100:9092,192.168.147.101:9092,192.168.147.102:9092  --topic test//消费消息
kafka-console-consumer.sh --bootstrap-server 192.168.147.100:9092,192.168.147.101:9092,192.168.147.102:9092 --topic test --from-beginning---------------------------------------------------------------------------------------from-beginning:会把主题中以往所有的数据都读取出来

在这里插入图片描述

//修改分区数
kafka-topics.sh --zookeeper 192.168.147.100:2181,192.168.147.101:2181,192.168.147.102:2181 --alter --topic test --partitions 6
//删除 topic
kafka-topics.sh --delete --zookeeper 192.168.147.100:2181,192.168.147.101:2181,192.168.147.102:2181 --topic test

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/33657.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Jenkins 使用

Jenkins 使用 文章目录 Jenkins 使用一、jenkins 任务执行二、 Jenkins 连接gitee三、Jenkins 部署静态网站 一、jenkins 任务执行 jenkins 创建 job job的名字最好是有意义的 restart_web_backend restart_web_mysql[rootjenkins ~]# ls /var/lib/jenkins/ config.xml …

为什么Tomcat的NIO在读取body时要模拟阻塞?

文章首发地址 Tomcat的NIO完全可以以非阻塞方式处理IO,为什么在读取body部分时要模拟阻塞呢?在Tomcat的NIO读取HTTP请求时,为了保证请求的正确性和可靠性,需要模拟阻塞模式,这是因为servlet规范里定义了ServletInputSt…

W5500-EVB-PICO作为TCP Client 进行数据回环测试(五)

前言 上一章我们用W5500-EVB-PICO开发板通过DNS解析www.baidu.com(百度域名)成功得到其IP地址,那么本章我们将用我们的开发板作为客户端去连接服务器,并做数据回环测试:收到服务器发送的数据,并回传给服务器…

设计模式-单例

概述 在类加载后,整个系统只有一个实例类 饿汉式 public class Mg1 {private static final Mg1 INSTANCE new Mg1();private Mg1(){}public static Mg1 getInstance(){return INSTANCE;}public static void main(String[] args) {System.out.println(Mg1.getIns…

SAP MM学习笔记16-在库品目评价

在库品目评价是指评估物料。具体比如物料价格,数量,保管场所等发生变化的时候,判断是否发生了变化,要不要生成 FI票,用哪个FI科目来进行管理等内容就叫在库品目评价。 在库品目评价有很多层级,这里先讲3兄弟…

物联网嵌入式学习路线发展方向(表格一目了然)

文章目录: 一:学习路线 二:各种分类 1.软件硬件分类 2.发展方向 技术类型 对应岗位分类 3.常见板子芯片内核 4.嵌入式公司 对于小白:不知道嵌入式整个体系?学什么?顺序是什么?可以找什么…

在Linux虚拟机内配置nginx以及docker

目录 1、nginx源码包编译以及安装依赖 1、配置安装所需的编译环境 2、安装函数库(pcre、zlib、openssl) 2、安装nginx 1、获取源码包 2、解压编译 3、启动nginx服务 1、关闭防火墙 2、运行nginx 3、使用本地浏览器进行验证 3、安装docker 1、…

每次执行@Test方法前都执行一次DB初始化(SpringBoot Test + JUnit5环境)

引言 在执行单元测试时,可以使用诸如H2内存数据库替代线上的Mysql数据库等,如此在执行单元测试时就能尽可能模拟真实环境的SQL执行,同时也无需依赖线上数据库,增加了测试用例执行环境的可移植性。而使用H2数据库时,通…

Oracle DB 安全性 : TDE HSM TCPS Wallet Imperva

• 配置口令文件以使用区分大小写的口令 • 对表空间进行加密 • 配置对网络服务的细粒度访问 TCPS 安全口令支持 Oracle Database 11g中的口令: • 区分大小写 • 包含更多的字符 • 使用更安全的散列算法 • 在散列算法中使用salt 用户名仍是Oracle 标识…

【JavaEE】Spring Boot - 日志文件

【JavaEE】Spring Boot 开发要点总结(3) 文章目录 【JavaEE】Spring Boot 开发要点总结(3)1. 日志有什么作用2. 日志格式2.1 日志框架原理 3. 日志的打印3.1 System.out.println3.2 使用日志框架3.3 日志级别3.3.1 设置默认日志显…

深度学习(36)—— 图神经网络GNN(1)

深度学习(36)—— 图神经网络GNN(1) 这个系列的所有代码我都会放在git上,欢迎造访 文章目录 深度学习(36)—— 图神经网络GNN(1)1. 基础知识2.使用场景3. 图卷积神经网…

提高测试用例质量的6大注意事项

在软件测试中,经常会遇到测试用例设计不完整,用例没有完全覆盖需求等问题,这样往往容易造成测试工作效率低下,不能及时发现项目问题,无形中增加了项目风险。 因此提高测试用例质量,就显得尤为重要。一般来说…

部署K8S集群

目录 一、环境搭建 1、准备环境 2、安装master节点 3、安装k8s-master上的node 4、安装配置k8s-node1节点 5、安装k8s-node2节点 6、为所有node节点配置flannel网络 7、配置docker开启加载防火墙规则允许转发数据 二、k8s常用资源管理 1、创建一个pod 2、pod管理 一、…

电脑开不了机如何解锁BitLocker硬盘锁

事情从这里说起,不想看直接跳过 早上闲着无聊,闲着没事干,将win11的用户名称改成了含有中文字符的用户名,然后恐怖的事情发生了,蓝屏了… 然后就是蓝屏收集错误信息,重启,蓝屏收集错误信息&…

C#小轮子:自动连续Ping网络地址

文章目录 前言Ping代码异步问题 前言 工作中,我们经常用到Ping这个指令,有时候我们需要Ping整个网段来查看这个网段上面有什么设备,哪些Ip地址是通的,这个时候就需要Ping指令 Ping 代码 我这个是批量Ping的代码,而…

python爬虫实战(2)--爬取某博热搜数据

1. 准备工作 使用python语言可以快速实现,调用BeautifulSoup包里面的方法 安装BeautifulSoup pip install BeautifulSoup完成以后引入项目 2. 开发 定义url url https://s.微博.com/top/summary?caterealtimehot定义请求头,微博请求数据需要cookie…

C++14 17共享超时互斥锁 shared_timed_mutex / 共享锁 shared_mutex

共享锁,也叫读写锁,主要应用与读多写少的场景。 比如,在多线程环境下,多个线程操作同一个文件,其中读文件的操作比写文件的操作更加频繁,那么在进行读操作时,不需要互斥,线程间可以…

OpenAI允许网站阻止其网络爬虫;谷歌推出类似Grammarly的语法检查功能

🦉 AI新闻 🚀 OpenAI推出新功能,允许网站阻止其网络爬虫抓取数据训练GPT模型 摘要:OpenAI最近推出了一个新功能,允许网站阻止其网络爬虫从其网站上抓取数据训练GPT模型。该功能通过在网站的Robots.txt文件中禁止GPTB…

datax抽取库名带点的表遇到的问题

一、描述任务 使用Datax抽取mysql中的数据到hive的wedw_ods层中,mysql的库名为:b.p.n.p 表名为:bene_group 二、datax.json脚本生成 因为datax的脚本是自动生成的,生成的格式如下: {"core": {},"jo…

python接口自动化测试框架2.0,让你像Postman一样编写测试用例,支持多环境切换、多业务依赖、数据库断言等

项目介绍 接口自动化测试项目2.0 软件架构 本框架主要是基于 Python unittest ddt HTMLTestRunner log excel mysql 企业微信通知 Jenkins 实现的接口自动化框架。 前言 公司突然要求你做自动化,但是没有代码基础不知道怎么做?或者有自动化…