IntervalJoin基于connect实现,期间会生成对应的IntervalJoinOperator。
@PublicEvolving
public <OUT> SingleOutputStreamOperator<OUT> process(ProcessJoinFunction<IN1, IN2, OUT> processJoinFunction,TypeInformation<OUT> outputType) {Preconditions.checkNotNull(processJoinFunction);Preconditions.checkNotNull(outputType);// 检查用户自定义Functionfinal ProcessJoinFunction<IN1, IN2, OUT> cleanedUdf = left.getExecutionEnvironment().clean(processJoinFunction);// 构建IntervalJoin对应的IntervalJoinOperatorfinal IntervalJoinOperator<KEY, IN1, IN2, OUT> operator =new IntervalJoinOperator<>(lowerBound,upperBound,lowerBoundInclusive,upperBoundInclusive,left.getType().createSerializer(left.getExecutionConfig()),right.getType().createSerializer(right.getExecutionConfig()),cleanedUdf);// (基于connect实现)使用给定的自定义Function,对每个元素进行连接操作return left.connect(right)// 根据k1、k2,为s1、s2分配k,实际就是构建ConnectedStreams,以便后续构建IntervalJoinOperator对应的Transformation.keyBy(keySelector1, keySelector2)// 构建IntervalJoinOperator对应的TwoInputTransformation.transform("Interval Join", outputType, operator);
}
并且会根据给定的自定义Function构建出对应的TwoInputTransformation,以便能够参与Transformation树的构建。
/*** 创建StreamOperator对应的Transformation,以便能参与Transformation树的构建*/
@PublicEvolving
public <R> SingleOutputStreamOperator<R> transform(String functionName,TypeInformation<R> outTypeInfo,TwoInputStreamOperator<IN1, IN2, R> operator) {inputStream1.getType();inputStream2.getType();// 创建IntervalJoinOperator对应的TwoInputTransformationTwoInputTransformation<IN1, IN2, R> transform = new TwoInputTransformation<>(inputStream1.getTransformation(),inputStream2.getTransformation(),functionName,operator,outTypeInfo,environment.getParallelism());if (inputStream1 instanceof KeyedStream && inputStream2 instanceof KeyedStream) {KeyedStream<IN1, ?> keyedInput1 = (KeyedStream<IN1, ?>) inputStream1;KeyedStream<IN2, ?> keyedInput2 = (KeyedStream<IN2, ?>) inputStream2;TypeInformation<?> keyType1 = keyedInput1.getKeyType();TypeInformation<?> keyType2 = keyedInput2.getKeyType();if (!(keyType1.canEqual(keyType2) && keyType1.equals(keyType2))) {throw new UnsupportedOperationException("Key types if input KeyedStreams " +"don't match: " + keyType1 + " and " + keyType2 + ".");}transform.setStateKeySelectors(keyedInput1.getKeySelector(), keyedInput2.getKeySelector());transform.setStateKeyType(keyType1);}@SuppressWarnings({ "unchecked", "rawtypes" })SingleOutputStreamOperator<R> returnStream = new SingleOutputStreamOperator(environment, transform);// 将IntervalJoinOperator对应的TwoInputTransformation,添加到Transformation树上getExecutionEnvironment().addOperator(transform);return returnStream;
}
作为ConnectedStreams,一旦left or right流中的StreamRecord抵达,就会被及时处理:
@Override
public void processElement1(StreamRecord<T1> record) throws Exception {/**处理left*/processElement(record, leftBuffer, rightBuffer, lowerBound, upperBound, true);
}@Override
public void processElement2(StreamRecord<T2> record) throws Exception {/**处理right*/processElement(record, rightBuffer, leftBuffer, -upperBound, -lowerBound, false);
}
两者的处理逻辑是相同的:
/*** 处理Left和Right中的数据*/
@SuppressWarnings("unchecked")
private <THIS, OTHER> void processElement(final StreamRecord<THIS> record,final MapState<Long, List<IntervalJoinOperator.BufferEntry<THIS>>> ourBuffer,final MapState<Long, List<IntervalJoinOperator.BufferEntry<OTHER>>> otherBuffer,final long relativeLowerBound,final long relativeUpperBound,// 当前Join上的数据是否为leftfinal boolean isLeft) throws Exception {// 当前left or right的StreamRecordfinal THIS ourValue = record.getValue();// 当前left or right的StreamRecord中的时间戳final long ourTimestamp = record.getTimestamp();if (ourTimestamp == Long.MIN_VALUE) {throw new FlinkException("Long.MIN_VALUE timestamp: Elements used in " +"interval stream joins need to have timestamps meaningful timestamps.");}// 是否迟到:当前StreamRecord中的时间戳是否小于当前Watermarkif (isLate(ourTimestamp)) {return;}// 将当前StreamRecord写入到它所对应的“己方MapState”中(left归left,right归right)addToBuffer(ourBuffer, ourValue, ourTimestamp);/*** 遍历当前StreamRecord的“对方MapState”,判断哪个StreamRecord被Join上了*/for (Map.Entry<Long, List<BufferEntry<OTHER>>> bucket: otherBuffer.entries()) {// “对方MapState”中的Key,即时间戳final long timestamp = bucket.getKey();// 如果遍历到的MapState的这个元素的时间戳不在(以当前StreamRecord的时间戳为基准的)Join的范围内,// 说明没Join上,那就跳过本次循环。这是判断哪个StreamRecord是否Join上的核心!if (timestamp < ourTimestamp + relativeLowerBound ||timestamp > ourTimestamp + relativeUpperBound) {continue;}// 反之,说明已经Join上了,那就取出这个元素的Value,即时间戳所对应的List<BufferEntry<T1>>for (BufferEntry<OTHER> entry: bucket.getValue()) {// 将Join上的left和right分发下游(回调用户自定义函数中的processElement()方法)if (isLeft) {collect((T1) ourValue, (T2) entry.element, ourTimestamp, timestamp);} else {collect((T1) entry.element, (T2) ourValue, timestamp, ourTimestamp);}}}// 经历双层for循环并分发下游后,计算清理时间(当前StreamRecord的时间戳+上界值)long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp;// 注册Timer来清理保存在MapState中的过期数据if (isLeft) {internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_LEFT, cleanupTime);} else {internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_RIGHT, cleanupTime);}
}
先取出当前StreamRecord中的Timestamp检查它是否已经迟到了,判断依据为:当前StreamRecord中的Timestamp是否小于当前Watermark。
/*** 判断当前StreamRecord是否迟到:当前StreamRecord中的时间戳是否小于当前Watermark*/
private boolean isLate(long timestamp) {// 获取当前的Watermarklong currentWatermark = internalTimerService.currentWatermark();// 迟到判定条件return currentWatermark != Long.MIN_VALUE && timestamp < currentWatermark;
}
接着将当前StreamRecord写入到对应的MapState中。需要注意的是,left和right都有各自的MapState,这个MapState将Timestamp作为Key,将List集合作为Value(考虑到同一时刻可能会有多条数据)
/*** 将当前StreamRecord写入到它所对应的MapState中(left归left,right归right)*/
private static <T> void addToBuffer(final MapState<Long, List<IntervalJoinOperator.BufferEntry<T>>> buffer,final T value,final long timestamp) throws Exception {// 先拿着时间戳作为key去MapState中取List<BufferEntry<T>> elemsInBucket = buffer.get(timestamp);if (elemsInBucket == null) {elemsInBucket = new ArrayList<>();}// 将StreamRecord包装成BufferEntry(默认未被Join上),add到List集合中elemsInBucket.add(new BufferEntry<>(value, false));// 将List集合put到MapState中(时间戳作为Key)buffer.put(timestamp, elemsInBucket);
}
接着会经历嵌套for循环,判断哪些StreamRecord是满足Join条件的:以当前StreamRecord的Timestamp和指定的上、下界组成时间过滤条件,对当前StreamRecord的“对方MapState”内的每个Timestamp(作为Key)进行比对。
/*** 遍历当前StreamRecord的“对方MapState”,判断哪个StreamRecord被Join上了*/
for (Map.Entry<Long, List<BufferEntry<OTHER>>> bucket: otherBuffer.entries()) {// “对方MapState”中的Key,即时间戳final long timestamp = bucket.getKey();// 如果遍历到的MapState的这个元素的时间戳不在(以当前StreamRecord的时间戳为基准的)Join的范围内,// 说明没Join上,那就跳过本次循环。这是判断哪个StreamRecord是否Join上的核心!if (timestamp < ourTimestamp + relativeLowerBound ||timestamp > ourTimestamp + relativeUpperBound) {continue;}// 反之,说明已经Join上了,那就取出这个元素的Value,即时间戳所对应的List<BufferEntry<T1>>for (BufferEntry<OTHER> entry: bucket.getValue()) {// 将Join上的left和right分发下游(回调用户自定义函数中的processElement()方法)if (isLeft) {collect((T1) ourValue, (T2) entry.element, ourTimestamp, timestamp);} else {collect((T1) entry.element, (T2) ourValue, timestamp, ourTimestamp);}}
}
一旦某个Key符合时间过滤条件,那就将它所对应的List集合(作为Value)取出来,逐条将其发送给下游,本质就是将其交给自定义Function处理
/*** 将满足IntervalJoin条件的StreamRecord发送给下游,本质就是将其交给自定义Function处理*/
private void collect(T1 left, T2 right, long leftTimestamp, long rightTimestamp) throws Exception {final long resultTimestamp = Math.max(leftTimestamp, rightTimestamp);collector.setAbsoluteTimestamp(resultTimestamp);context.updateTimestamps(leftTimestamp, rightTimestamp, resultTimestamp);// 将Join上的StreamRecord交给自定义Function,执行开发者的处理逻辑userFunction.processElement(left, right, context, collector);
}
整个过滤筛选过程,也是IntervalJoin的核心所在!
最后,会计算保存在MapState中的StreamRecord的过期清理时间,因为StreamRecord不能一直被保存。本质就是基于InternalTimerService注册Timer,触发时间为:当前StreamRecord的Timestamp + 给定的上界值。
// 经历双层for循环并分发下游后,计算清理时间(当前StreamRecord的时间戳+上界值)
long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp;
// 注册Timer来清理保存在MapState中的过期数据
if (isLeft) {internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_LEFT, cleanupTime);
} else {internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_RIGHT, cleanupTime);
}
由于IntervalJoinOperator实现了Triggerable接口,因此一旦注册的Timer被触发,就会将对应MapState中对应的Timestamp进行remove
/*** 基于InternalTimerService注册的Timer,会定时对MapState执行clean操作*/
@Override
public void onEventTime(InternalTimer<K, String> timer) throws Exception {long timerTimestamp = timer.getTimestamp();String namespace = timer.getNamespace();logger.trace("onEventTime @ {}", timerTimestamp);switch (namespace) {case CLEANUP_NAMESPACE_LEFT: {long timestamp = (upperBound <= 0L) ? timerTimestamp : timerTimestamp - upperBound;logger.trace("Removing from left buffer @ {}", timestamp);// clean leftleftBuffer.remove(timestamp);break;}case CLEANUP_NAMESPACE_RIGHT: {long timestamp = (lowerBound <= 0L) ? timerTimestamp + lowerBound : timerTimestamp;logger.trace("Removing from right buffer @ {}", timestamp);// clean rightrightBuffer.remove(timestamp);break;}default:throw new RuntimeException("Invalid namespace " + namespace);}
}