【论文阅读】EULER:通过可扩展时间链接预测检测网络横向移动(NDSS-2022)

作者:乔治华盛顿大学-Isaiah J. King、H. Howie Huang
引用:King I J, Huang H H. Euler: Detecting Network Lateral Movement via Scalable Temporal Graph Link Prediction [C]. Proceedings 2022 Network and Distributed System Security Symposium, 2022.
原文地址:https://dl.acm.org/doi/pdf/10.1145/3588771
源码地址:https://github.com/iHeartGraph/Euler
数据集:LANL

目录

  • 0. 摘要
  • 1. 引言&动机
  • 2. 背景
  • 3. 动机
  • 4. EULER
    • A. 编码与解码器
    • B. 工作流程
    • C. 训练
    • D. 分类
  • 5. 基准评估
  • 6. 横向移动检测


0. 摘要

  提出了 EULER 的框架。它由堆叠在模型不可知序列编码层(例如递归神经网络)上的不可知图神经网络模型组成。根据 EULER 框架构建的模型可以轻松地将其图形卷积层分布在多台机器上,以实现大幅性能提升。EULER 模型可以高效地高精度识别实体之间的异常连接,并且优于其他无监督技术。

1. 引言&动机

  检测恶意软件传播的最可靠方法不是详尽列出与其相关的每个已知恶意签名;相反,它是训练一个模型来学习正常活动的样子,并在检测到偏离正常活动的行为时发出警报。存在的挑战:检测模型需要可扩展以适应TB级日志文件、必须具有极低的误报率

  在这项工作中,我们将异常横向移动检测制定为时间图链接预测问题。在网络上以离散时间单位发生的交互可以抽象为一系列称为快照的图 G t = { V , E t } G_t = \{V, E_t\} Gt={V,Et},其中 V V V 是网络中在设定的时间段 t t t 内具有交互的实体集 E t = { ( u , v ) ∈ V } E_t = \{(u, v) ∈ V\} Et={(u,v)V}时间链接预测模型将从以前的快照中学习正常的行为模式,并将可能性分数分配给未来发生的边缘,可能性分数低的边与网络中的异常连接相关

  最近的时间链接预测方法将图神经网络 (GNN) 与序列编码器(例如递归神经网络 (RNN))相结合,以捕获不断发展的网络的拓扑和时间特征。然而,这些方法要么依赖于嵌入的 GNN 阶段的 RNN 输出,要么仅仅将 GNN 纳入 RNN 架构。如图 1a 所示,这些模型必须是连续的,因而无法扩展到它们去处理大型数据集。

  观察到:1)现有架构中内存最密集的部分发生在 GNN 的消息传递阶段;2)节点输入特征的巨大尺寸与相对较小的拓扑节点嵌入之间存在不平衡;这意味着最多的工作和最多的内存使用发生在GNN。如果多个复制的 GNN 独立地对快照进行操作,它们可以并发执行,性能会随之提高,如图 1b 所示。
在这里插入图片描述

(a)先前的方法在嵌入的 GNN 阶段依赖于 RNN 输出,或者仅仅将 GNN 合并到 RNN 架构中,这迫使模型串行工作,一次一个快照。相反,(b) EULER 框架可以利用多个工作机器来保存离散时间图的连续快照。这些工作人员通过每台机器共享的复制 GNN 并行处理快照。这些 GNN 的输出返回到领导机器,领导机器通过递归神经网络运行它们以创建可用于链接预测的时间节点嵌入。

总结贡献如下:

  • 首次将时态图链接预测用于基于异常的入侵检测。其他将图分析应用于异常检测的研究要么没有考虑数据的时间性质,要么没有使用强大的 GNN 模型
  • 对于时间链接预测和检测,我们提出的简单框架与最先进的时间图自动编码器模型一样准确或更精确
  • 提出了一个用于大数据的分布式时间链接预测的可扩展框架

2. 背景

  离散时态图 G = { G 1 , G 2 , . . . G T } G = \{G_1, G_2, ...G_T \} G={G1,G2,...GT}被定义为一系列图 G t = { V , E t , X t } G_t = \{V, E_t, X_t\} Gt={V,Et,Xt} 的集合,称之为快照。 V V V 表示出现在网络中的所有节点的集合, E t E_t Et 表示时间 t t t 节点之间的关系,即边集, X t X_t Xt 表示与 t t t 时节点相关的特征。所有图都是有向的,有些图具有加权边, W : E → R W : E → R W:ER 表示每个快照包含的时间段内的边频率。一个图是时间窗口 δ δ δ 内的所有主体、对象、时间的三元组 < s r c , d s t , t s > <src,dst,ts> <src,dst,ts>
  时间链接预测:定义为在给定先前观察到的网络快照的情况下,找到一个函数来描述时间图中某个时间点存在边的可能性。观察到的可能性得分低于特定阈值的实体之间的交互被称为异常。在网络监控的背景下,这些异常边缘通常表示横向移动。

3. 动机

  考虑图 2 中所示的示例。前两个时间片显示网络中的正常活动:首先在 t0,Alice 和 Bob 向他们的计算机 A 和 B 进行身份验证,然后在t1 计算机 A 和 B 向共享驱动器发出请求。在时间 t2 和 t3,如果我们没有看到 Bob 首先向计算机 B 进行身份验证时,它则不与共享驱动器通信。一个简单的概率分布是显而易见的: P ( ( C 1 , S D ) ∈ E t + 1 ∣ ( B , C 1 ) ∈ E t ) = 1 P ( ( C 1 , S D ) ∈ E t + 1 ∣ ( B , C 1 ) ∉ E t ) = 0 \begin{gathered} \mathsf{P}((\mathsf{C1},\mathsf{S D})\in{\mathcal{E}}_{\mathsf{t}+1}\mid(\mathsf{B},\mathsf{C1})\in{\mathcal{E}}_{\mathrm{t}})=1 \\ \mathsf{P}((\mathsf{C1},\mathsf{S D})\in\mathcal{E}_{\mathsf{t}+1}\mid(\mathsf{B},\mathsf{C1})\not\in\mathcal{E}_{\mathsf{t}})= 0 \end{gathered} P((C1,SD)Et+1(B,C1)Et)=1P((C1,SD)Et+1(B,C1)Et)=0然而,在 t4 和 t5 中,发生了一些不寻常的事情:计算机 B 从共享驱动器请求数据,而 Bob 没有先通过它进行身份验证,这可能是攻击行为。

在这里插入图片描述
  现有的基于图的方法不考虑时间,而许多基于事件的方法孤立地查看每个事件,他们缺乏捕捉网络中其他实体之间发生的交互的重要性以及它们如何与单独事件相关的能力,将看不出 (C1,SD) 在时间 t1 和时间 t5之间的区别。为了检测示例中的攻击,模型需要参考之前发生的事件以及网络中的其他交互来考虑事件。在一个时间点发生的两个实体之间的事件不能被认为与未来在不同的全局背景下发生的同一事件相同

这里原文举的例子是t1和t4,但是我理解的是:传统方法会因为发生过t0,导致认为t5是正常的,其实并不是,所以必须考虑时间信息,不能忽略相同信息的时间影响,比如验证过期需要重新验证。所以改成了t1和t5。


4. EULER

  该框架旨在学习以时间图的先前状态为条件的概率函数,以确定边缘出现在稍后状态的可能性。

A. 编码与解码器

  它由堆叠在模型不可知递归神经网络 (RNN) 上的模型不可知图神经网络 (GNN) 组成。这些模型共同旨在找到编码函数 f ( ⋅ ) f(·) f() 和解码函数 g ( ⋅ ) g(·) g()。编码函数将具有 T T T 个快照的时间图中的节点映射到 T T T 个低维嵌入向量。解码功能确保在编码过程中丢失的信息最少,旨在从潜在 Z Z Z 向量重建输入快照。 Z = f ( { G 0 , … , G T } ) = RNN ⁡ ( [ GNN ⁡ ( X 0 , A 0 ) , … , GNN ⁡ ( X T , A T ) ] ) \begin{aligned} & Z=f(\{\mathcal{G}_0,\ldots,\mathcal{G}_T\}) \\&=\operatorname{RNN}(\left[\operatorname{GNN}(\mathbf{X}_0,\mathbf{A}_0),\ldots,\operatorname{GNN}(\mathbf{X}_T,\mathbf{A}_T)\right]) \end{aligned} Z=f({G0,,GT})=RNN([GNN(X0,A0),,GNN(XT,AT)])其中 A t A_t At 是时间 t t t 快照的 ∣ V ∣ × ∣ V ∣ |V|×|V| V×V 邻接矩阵表示。这个 T × ∣ V ∣ × d T ×|V|× d T×V×d 维张量 Z Z Z 被优化为包含关于图形结构的信息,以及它如何随时间变化的动态。

  解码函数 g ( Z t ) = P r ( A t + n = 1 ∣ Z t ) = σ ( Z t Z t T ) = A ~ t + n \mathbf{g}(\mathbf{Z}_\mathbf{t})=\mathbf{Pr}(\mathbf{A}_{\mathbf{t}+\mathbf{n}}=\mathbf{1}\mid\mathbf{Z}_\mathbf{t})\\=σ(\mathbf{Z}_{\mathrm{t}}\mathbf{Z}_{\mathrm{t}}^{\mathsf{T}})={\mathbf{\tilde{A}}}_{\mathrm{t+n}} g(Zt)=Pr(At+n=1Zt)=σ(ZtZtT)=A~t+n其中 σ ( ⋅ ) σ(·) σ() 表示 logistic sigmoid 函数, 且 A ~ t + n {\mathbf{\tilde{A}}}_{\mathrm{t+n}} A~t+n 表示在时间 t + n t + n t+n 处重建的邻接矩阵。

B. 工作流程

  EULER 框架的核心是将与模型无关的 GNN 的副本(我们称之为拓扑编码器)堆叠在具有一些简单约束的与模型无关的循环层上。当适应以一个循环层作为领导者、多个拓扑编码器作为工作者的领导者/工作者范式时,它具有大规模并行的潜力。整体工作流程如图 3 所示,分为5个阶段:

  • 领导者生成工作人员并指示他们加载哪些快照
  • 领导者启动训练循环,工人生成拓扑嵌入
  • 接收到拓扑嵌入后,领导者通过 RNN 处理它们
  • 将RNN的输出发回工人计算损失或打分
  • 在训练模式下,损失返回给领导者进行反向传播。

C. 训练

  两种训练模式:链接检测器和链接预测器。区别在于第 4 步将 Z t Z_t Zt 嵌入发送给工作人员以计算损失。链路检测器是感应的;他们使用部分观察到的快照生成 Z t Z_t Zt 并尝试用 g ( Z t ) g(Z_t) g(Zt) 重建完整的邻接矩阵 A t A_t At。然后人工执行审计以识别已经发生的异常连接。链接预测器是转导的;他们使用快照生成 Z t Z_t Zt,以预测未来状态 A t + n A_{t+n} At+n ,然后对观察到的边进行评分。

D. 分类

  尽管对于我们的大部分评估,我们依赖于与分配给边的分数的适应性相关的回归指标,但自动化确定异常阈值的过程以获得分类分数是很有用的。为此,在训练模型时,我们拿出一个或多个完整快照作为额外的验证集。使用来自训练快照的 RNN 的最终隐藏状态 h 作为验证快照的输入,找到边缘似然分数的最佳截止阈值。给定验证快照中存在的一组边缘分数,最佳截止阈值 τ 满足 argmin ∥ ( 1 − λ ) TPR ( τ ) − λ FPR ( τ ) ∥ \text{argmin}\quad\|(1-\lambda)\text{TPR}(\tau)-\lambda\text{FPR}(\tau)\| argmin(1λ)TPR(τ)λFPR(τ)其中 T P R ( τ ) TPR(τ) TPR(τ) F P R ( τ ) FPR(τ) FPR(τ) 指的是给定截止阈值 τ τ τ 的分类的真阳性率和假阳性率,λ = 0.6。

5. 基准评估

  可用的最通用的GNN,叠加在GRU上。非常简单,被称为“朴素方法”,但它也是经过测试的最快的时间模型。

  在初始前向传递之前包含一个边缘dropout层,并在所有层之间包含特征dropout层,以防止小数据集上的过拟合和过平滑。

  隐藏层和输出都是32维的。然后,GCN输出序列通过tanh激活函数,然后由单个32维GRU处理,最后通过MLP将输出投影到16维嵌入中。

其他评估模型:DynGraph2Vec、Evolving GCN 、VGRNN、VGAE

三个数据集:Facebook、Enron10和COLAB
在这里插入图片描述在这里插入图片描述

6. 横向移动检测

LANL数据集,5个不同来源的57天的日志文件、正常活动+红队活动、已标记。
在这里插入图片描述
我们将三个编码器与两个递归神经网络以及没有递归层的模型结合起来测试,以测量时间数据对整体嵌入的价值。编码器模型有GCN、GAT和GraphSAGE。循环模型为GRU和LSTM。
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/32272.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UDP通信实验、广播与组播、本地套接字

文章目录 流程函数应用广播应用 组播&#xff08;多播&#xff09;本地套接字应用 流程 函数 返回值&#xff1a; 成功&#xff0c;返回成功发送的数据长度 失败&#xff0c;-1 返回值&#xff1a; 成功&#xff0c;返回成功接收数据长度 失败&#xff0c;-1 应用 广播 应用 …

MongoDB文档-进阶使用-MongoDB索引-createindex()与dropindex()-在MongoDB中使用正则表达式来查找

阿丹&#xff1a; 之前研究了MongoDB的基础增删改查。在学会基础的数据库增删改查肯定是不够的。这个时候就涉及到了数据库搜索的时候的效率。需要提高数据的搜索效率。 MongoDB索引 在所以数据库中如果没有数据索引的时候。如果需要查找到一些数据。都会去主动扫描所有可能存…

mybatis-plus的逻辑删除的坑

一旦在逻辑字段上加了TableLogic逻辑删除的配置&#xff0c;并且使用mybatis-plus自带的方法时&#xff08;如果自己用xml写SQL不会出现下面的情况&#xff09; 查询、修改时会自动排除逻辑删除的数据 当使用mybatis-plus自带的查询方法时&#xff0c;就不用每次查询的时候跟…

Blazor 简单组件(1):B_Icon开发

文章目录 前言ICON开发使用 前言 Blazor 简单组件(0)&#xff1a;简单介绍 ICON开发 <i class"Type" style"font-size:(Size)px;color:Color;"></i>code {/// <summary>/// icon类型/// </summary>[Parameter]public string Typ…

nginx 以及nginx优化

目录 nginx功能介绍 静态文件服务 反向代理 动态内容处理 SSL/TLS 加密支持 虚拟主机支持 URL 重写和重定向 缓存机制 日志记录 可扩展性和灵活性 nginx的主要应用场景 nginx常用命令 nginx另外一种安装方式 nginx常用的信号符&#xff1a; nginx配置文件详解 n…

Nginx复现

docker复现Nginx配置漏洞 2.1CRLF(carriage return/line feed)注入漏洞 这个漏洞产生的原因是请求重定向的错误配置&#xff0c;导致在url中输入回车换行符可以控制http响应头部 比如&#xff1a;location / { return 302 https://$host$uri; } 原本的目的是为了让http的…

【JavaEE基础学习打卡02】是时候了解JavaEE了

目录 前言一、为什么要学习JavaEE二、JavaEE规范介绍1.什么是规范&#xff1f;2.什么是JavaEE规范&#xff1f;3.JavaEE版本 三、JavaEE应用程序模型1.模型前置说明2.模型具体说明 总结 前言 &#x1f4dc; 本系列教程适用于JavaWeb初学者、爱好者&#xff0c;小白白。我们的天…

c#在设计时调试自定义 Windows 窗体控件

private string demoStringValue null; [Browsable(true)] public string DemoString {get{return this.demoStringValue;}set{demoStringValue value;} } 参考链接 在设计时调试自定义控件 - Windows Forms .NET Framework | Microsoft Learnhttps://learn.microsoft.com/z…

生信豆芽菜——配对型的复杂箱线图使用说明

网站&#xff1a;http://www.sxdyc.com/visualsBoxHalfPlot 一、配对型的复杂箱线图简介 配对型的复杂箱线图原理与箱线图相同&#xff0c;常见于配对样本的数据分析中&#xff0c;在日常研究中&#xff0c;我们会碰到配对资料&#xff0c;例如同一病人治疗前后的变化&#xff…

数据结构: 线性表(带头双向循环链表实现)

之前一章学习了单链表的相关操作, 但是单链表的限制却很多, 比如不能倒序扫描链表, 解决方法是在数据结构上附加一个域, 使它包含指向前一个单元的指针即可. 那么怎么定义数据结构呢? 首先我们先了解以下链表的分类 1. 链表的分类 链表的结构非常多样, 以下情况组合起来就有…

LVS集群

目录 1、lvs简介&#xff1a; 2、lvs架构图&#xff1a; 3、 lvs的工作模式&#xff1a; 1&#xff09; VS/NAT&#xff1a; 即&#xff08;Virtual Server via Network Address Translation&#xff09; 2&#xff09;VS/TUN &#xff1a;即&#xff08;Virtual Server v…

7.2 手撕VGG11模型 使用Fashion_mnist数据训练VGG

VGG首先引入块的思想将模型通用模板化 VGG模型的特点 与AlexNet&#xff0c;LeNet一样&#xff0c;VGG网络可以分为两部分&#xff0c;第一部分主要由卷积层和汇聚层组成&#xff0c;第二部分由全连接层组成。 VGG有5个卷积块&#xff0c;前两个块包含一个卷积层&#xff0c…

MySQL_SQL性能分析

SQL执行频次 语法&#xff1a; SHOW GLOBAL STATUS LIKE COM_类型; COM_insert; 插入次数 com_delete; 删除次数 com_update; 更新次数 com_select; 查询次数 com_______; 注意&#xff1a;通过语法&#xff0c;可以查询到数据库的实际状态&#xff0c;就可以知道数据库是以增删…

TDesign中后台管理系统-用户登录

目录 1 创建用户表2 开发后端接口3 测试接口4 修改登录页面调用后端接口最终效果总结 中后台系统第一个要实现的功能就是登录了&#xff0c;我们通常的逻辑是让用户在登录页面输入用户名和密码&#xff0c;调用后端接口去验证用户的合法性&#xff0c;然后根据接口返回的结果进…

【T3】金蝶kis凭证数据转换到畅捷通T3软件中。

【问题需求】 将金蝶软件中的账套转换到畅捷通T3软件中。 由于金蝶老版本使用的是非sql server数据库。 进而需要将其数据导入到sql中,在转换到T3。 【转换环境】 金蝶中数据:凭证;科目无项目核算。 1、金蝶的数据文件后缀为.AIS; 2、安装office2003全版软件; 3、安装sq…

【算法】双指针——leetcode盛最多水的容器、剑指Offer57和为s的两个数字

盛水最多的容器 &#xff08;1&#xff09;暴力解法 算法思路&#xff1a;我们枚举出所有的容器大小&#xff0c;取最大值即可。 容器容积的计算方式&#xff1a; 设两指针 i , j &#xff0c;分别指向水槽板的最左端以及最右端&#xff0c;此时容器的宽度为 j - i 。由于容器…

【CDH集群】无法发出查询:Host Monitor未运行

无法发出查询:Host Monitor未运行 【CDH集群】无法发出查询:Host Monitor未运行同事的解决方案解决方法&#xff1a;删除原uuid重启agent查看新uuid修改scm数据库中HOSTS表中的agent的uuid 【CDH集群】无法发出查询:Host Monitor未运行 起初是impala报错&#xff0c;连接不上&…

使用 React Native CLI 创建项目

React Native 安装的先决条件和设置 需要掌握的知识点 掌握 JavaScript 基础知识掌握 React 相关基础知识掌握 TypeScript 相关基础知识 安装软件前需要首先安装Chocolatey。Chocolatey 是一种流行的 Windows 包管理器。 安装 nodejs 和 JDK choco install -y nodejs-lts …

【工作记录】mysql中实现分组统计的三种方式

前言 实际工作中对范围分组统计的需求还是相对普遍的&#xff0c;本文记录下在mysql中通过函数和sql完成分组统计的实现过程。 数据及期望 比如我们获取到了豆瓣电影top250&#xff0c;现在想知道各个分数段的电影总数. 表数据如下: 期望结果: 实现方案 主要思路是根据s…

解决Vue+Element-UI 进行From表单校验时出现了英文提示问题

说明&#xff1a;该篇博客是博主一字一码编写的&#xff0c;实属不易&#xff0c;请尊重原创&#xff0c;谢谢大家&#xff01; 问题描述 在使用form表单时&#xff0c;往往会对表单字段进行校验&#xff0c;字段为必填项时会添加required属性&#xff0c;此时自定义rules规则…