转载自 Spring Boot之基于Redis实现MyBatis查询缓存解决方案
1. 前言
MyBatis是Java中常用的数据层ORM框架,笔者目前在实际的开发中,也在使用MyBatis。本文主要介绍了MyBatis的缓存策略、以及基于SpringBoot和Redis实现MyBatis的二级缓存的过程。实现本文的demo,主要依赖以下软件版本信息,但是由于数据层面的实现,并不依赖具体的版本,你可以以自己主机当前的环境创建。
软件环境 | 版本 |
---|---|
SpringBoot | 1.5.18 |
Redis | 通用 |
MyBatis | 3.4.+ |
2. MyBatis缓存策略
2.1 一级缓存
MyBatis默认实现了一级缓存,实现过程可参考下图:
默认基础接口有两个:
-
org.apache.ibatis.session.SqlSession: 提供了用户和数据库交互需要的所有方法,默认实现类是DefaultSqlSession。
-
org.apache.ibatis.executor.Executor: 和数据库的实际操作接口,基础抽象类BaseExecutor。
我们从底层往上查看源代码,首先打开BaseExecutor的源代码,可以看到Executor实现一级缓存的成员变量是PerpetualCache对象。
/*** @author Clinton Begin*/
public abstract class BaseExecutor implements Executor {private static final Log log = LogFactory.getLog(BaseExecutor.class);protected Transaction transaction;protected Executor wrapper;protected ConcurrentLinkedQueue<DeferredLoad> deferredLoads;// 实现一级缓存的成员变量protected PerpetualCache localCache;protected PerpetualCache localOutputParameterCache;protected Configuration configuration;...
}
我们再打开PerpetualCache类的代码:
/*** @author Clinton Begin*/
public class PerpetualCache implements Cache {private final String id;private Map<Object, Object> cache = new HashMap<Object, Object>();public PerpetualCache(String id) {this.id = id;}...
}
可以看到PerpetualCache是对Cache的基本实现,而且通过内部持有一个简单的HashMap实现缓存。
了解了一级缓存的实现后,我们再回到入口处,为了你的sql语句和数据库交互,MyBatis首先需要实现SqlSession,通过DefaultSqlSessionFactory实现SqlSession的初始化的过程可查看:
private SqlSession openSessionFromDataSource(ExecutorType execType, TransactionIsolationLevel level, boolean autoCommit) {Transaction tx = null;try {final Environment environment = configuration.getEnvironment();final TransactionFactory transactionFactory = getTransactionFactoryFromEnvironment(environment);tx = transactionFactory.newTransaction(environment.getDataSource(), level, autoCommit);// Executor初始化final Executor executor = configuration.newExecutor(tx, execType);return new DefaultSqlSession(configuration, executor, autoCommit);} catch (Exception e) {closeTransaction(tx); // may have fetched a connection so lets call close()throw ExceptionFactory.wrapException("Error opening session. Cause: " + e, e);} finally {ErrorContext.instance().reset();}
}
从代码中可以看到,通过configuration创建一个Executor,实际创建Executor的过程如下:
public Executor newExecutor(Transaction transaction, ExecutorType executorType) {executorType = executorType == null ? defaultExecutorType : executorType;executorType = executorType == null ? ExecutorType.SIMPLE : executorType;Executor executor;if (ExecutorType.BATCH == executorType) {executor = new BatchExecutor(this, transaction);} else if (ExecutorType.REUSE == executorType) {executor = new ReuseExecutor(this, transaction);} else {executor = new SimpleExecutor(this, transaction);}// 是否开启二级缓存// 如果开启,使用CahingExecutor装饰BaseExecutor的子类if (cacheEnabled) {executor = new CachingExecutor(executor);}executor = (Executor) interceptorChain.pluginAll(executor);return executor;
}
注意,cacheEnabled字段是二级缓存是否开启的标志位,如果开启,会使用使用CahingExecutor装饰BaseExecutor的子类。
创建完SqlSession,根据Statment的不同,会使用不同的SqlSession查询方法:
@Overridepublic <E> List<E> selectList(String statement, Object parameter, RowBounds rowBounds) {try {MappedStatement ms = configuration.getMappedStatement(statement);return executor.query(ms, wrapCollection(parameter), rowBounds, Executor.NO_RESULT_HANDLER);} catch (Exception e) {throw ExceptionFactory.wrapException("Error querying database. Cause: " + e, e);} finally {ErrorContext.instance().reset();}}
SqlSession把具体的查询职责委托给了Executor,如果只开启了一级缓存的话,首先会进入BaseExecutor的query方法。代码如下所示:
@SuppressWarnings("unchecked")
@Override
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId());if (closed) {throw new ExecutorException("Executor was closed.");}if (queryStack == 0 && ms.isFlushCacheRequired()) {clearLocalCache();}List<E> list;try {queryStack++;// 使用缓存list = resultHandler == null ? (List<E>) localCache.getObject(key) : null;if (list != null) {handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);} else {list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);}} finally {queryStack--;}if (queryStack == 0) {for (DeferredLoad deferredLoad : deferredLoads) {deferredLoad.load();}// issue #601deferredLoads.clear();if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {// issue #482// 清空缓存clearLocalCache();}}return list;
}
query方法实现了缓存的查询过程,在query方法执行的最后,会判断一级缓存级别是否是STATEMENT级别,如果是的话,就清空缓存,这也就是STATEMENT级别的一级缓存无法共享localCache的原因。
SqlSession的insert方法和delete方法,都会统一走update的流程,在BaseExecutor实现的update方法中:
@Override
public int update(MappedStatement ms, Object parameter) throws SQLException {ErrorContext.instance().resource(ms.getResource()).activity("executing an update").object(ms.getId());if (closed) {throw new ExecutorException("Executor was closed.");}// 清空缓存clearLocalCache();return doUpdate(ms, parameter);
}
可以看到,每次执行update方法都会执行clearLocalCache清空缓存。至此,我们分析完了MyBatis的一级缓存从入口到实现的过程。
关于MyBatis一级缓存的总结:
-
一级缓存的生命周期和SqlSession保持一致;
-
一级缓存的缓存通过HashMap实现;
-
一级缓存的作用域是对应的SqlSession,假如存在多个SqlSession,写操作可能会引起脏数据。
2.2 二级缓存
在上一小节中,我们知道一级缓存的的作用域就是对应的SqlSession。若开启了二级缓存,会使用CachingExecutor装饰Executor,进入一级缓存的查询流程前,先在CachingExecutor进行二级缓存的查询,二级缓存的查询流程如图所示:
二级缓存开启后,同一个namespace下的所有数据库操作语句,都使用同一个Cache,即二级缓存结果会被被多个SqlSession共享,是一个全局的变量。当开启二级缓存后,数据查询的执行流程就是二级缓存 -> 一级缓存 -> 数据库。
二级缓的实现源码,可以查看CachingExecutor类的query方法:
@Override
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql)throws SQLException {// 从MappedStatement中获得在配置初始化时赋予的CacheCache cache = ms.getCache();if (cache != null) {// 判断是否需要刷新缓存flushCacheIfRequired(ms);if (ms.isUseCache() && resultHandler == null) {// 主要是用来处理存储过程的ensureNoOutParams(ms, boundSql);@SuppressWarnings("unchecked")// 尝试从tcm中获取缓存的列表,会把获取值的职责一路传递List<E> list = (List<E>) tcm.getObject(cache, key);if (list == null) {list = delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);tcm.putObject(cache, key, list); // issue #578 and #116}return list;}}return delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}
在二级缓存查询结束后,就会进入一级缓存的执行流程,可参考上一小节内容。
关于二级缓存的总结:
-
二级缓存是SqlSession之间共享,能够做到mapper级别,并通过Cache实现缓存。
-
由于MyBatis的缓存都是内存级的,在分布式环境下,有可能会产生脏数据,因此可以考虑使用第三方存储组件,如Redis实现二级缓存的存储,这样的安全性和性能也会更高。
3. SpringBoot和Redis实现MyBatis二级缓存
MyBatis的默认实现一级缓存的,二级缓存也是默认保存在内存中,因此当分布式部署你的应用时,有可能会产生脏数据。通用的解决方案是找第三方存储缓存结果,比如Ehcache、Redis、Memcached等。接下来,我们介绍下,使用Redis作为缓存组件,实现MyBatis二级缓存。
在实现二级缓存之前,我们假设你已经实现了SpringBoot+MyBatis的构建过程,如果还没有,建议你先创建一个demo实现简单的CRUD过程,然后再查看本文解决二级缓存的问题。
3.1 增加Redis配置
首先在你的工程加入Redis依赖:
compile('org.springframework.boot:spring-boot-starter-data-redis')
我使用的gradle,使用maven的同学可对应查询即可!
其次在配置文件中加入Redis的链接配置:
spring.redis.cluster.nodes=XXX:port,YYY:port
这里我们使用的是Redis集群配置。
打开mybatis.xml配置文件,开启二级缓存:
<setting name="cacheEnabled" value="true"/>
增加Redis的配置类,开启json的序列化:
import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;/*** Created by zhaoyh on 2019-01-23** @author zhaoyh*/
@Configuration
public class RedisConfig {/*** 重写Redis序列化方式,使用Json方式:* 当我们的数据存储到Redis的时候,我们的键(key)和值(value)都是通过Spring提供的Serializer序列化到数据库的。RedisTemplate默认使用的是JdkSerializationRedisSerializer,StringRedisTemplate默认使用的是StringRedisSerializer。* Spring Data JPA为我们提供了下面的Serializer:* GenericToStringSerializer、Jackson2JsonRedisSerializer、JacksonJsonRedisSerializer、JdkSerializationRedisSerializer、OxmSerializer、StringRedisSerializer。* 在此我们将自己配置RedisTemplate并定义Serializer。* @param redisConnectionFactory* @return*/@Bean(name = "redisTemplate")public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) {RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>();redisTemplate.setConnectionFactory(redisConnectionFactory);Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<>(Object.class);ObjectMapper om = new ObjectMapper();om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);jackson2JsonRedisSerializer.setObjectMapper(om);// 设置值(value)的序列化采用Jackson2JsonRedisSerializer。redisTemplate.setValueSerializer(jackson2JsonRedisSerializer);// 设置键(key)的序列化采用StringRedisSerializer。redisTemplate.setKeySerializer(new StringRedisSerializer());redisTemplate.afterPropertiesSet();return redisTemplate;}
}
3.2 实现MyBatis的Cache接口
org.apache.ibatis.cache.Cache接口是MyBatis通用的缓存实现接口,包括一级缓存和二级缓存都是基于Cache接口实现缓存机制。
创建MybatisRedisCache类,实现Cache接口:
import org.apache.ibatis.cache.Cache;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.dao.DataAccessException;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.util.CollectionUtils;
import java.util.Set;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;/*** Created by zhaoyh on 2019-01-22* MyBatis二级缓存配置* @author zhaoyh*/
public class MybatisRedisCache implements Cache {private static final Logger LOG = LoggerFactory.getLogger(MybatisRedisCache.class);/*** 默认redis有效期* 单位分钟*/private static final int DEFAULT_REDIS_EXPIRE = 10;/*** 注入redis*/private static RedisTemplate<String, Object> redisTemplate = null;/*** 读写锁*/private final ReadWriteLock readWriteLock = new ReentrantReadWriteLock(true);/*** cache id*/private String id = null;/*** 构造函数* @param id*/public MybatisRedisCache(final String id) {if (null == id) {throw new IllegalArgumentException("MybatisRedisCache Instance Require An Id...");}LOG.info("MybatisRedisCache: " + id);this.id = id;}/*** @return The identifier of this cache*/@Overridepublic String getId() {return this.id;}/*** @param key Can be any object but usually it is a {@link}* @param value The result of a select.*/@Overridepublic void putObject(Object key, Object value) {if (null != value) {LOG.info("putObject key: " + key.toString());// 向Redis中添加数据,默认有效时间是2小时redisTemplate.opsForValue().set(key.toString(), value, DEFAULT_REDIS_EXPIRE, TimeUnit.MINUTES);}}/*** @param key The key* @return The object stored in the cache.*/@Overridepublic Object getObject(Object key) {try {if (null != key) {LOG.info("getObject key: " + key.toString());return redisTemplate.opsForValue().get(key.toString());}} catch (Exception e) {LOG.error("getFromRedis: " + key.toString() + " failed!");}LOG.info("getObject null...");return null;}/*** As of 3.3.0 this method is only called during a rollback* for any previous value that was missing in the cache.* This lets any blocking cache to release the lock that* may have previously put on the key.* A blocking cache puts a lock when a value is null* and releases it when the value is back again.* This way other threads will wait for the value to be* available instead of hitting the database.** 删除缓存中的对象** @param keyObject The key* @return Not used*/@Overridepublic Object removeObject(Object keyObject) {if (null != keyObject) {redisTemplate.delete(keyObject.toString());}return null;}/*** Clears this cache instance* 有delete、update、insert操作时执行此函数*/@Overridepublic void clear() {LOG.info("clear...");try {Set<String> keys = redisTemplate.keys("*:" + this.id + "*");LOG.info("keys size: " + keys.size());for (String key : keys) {LOG.info("key : " + key);}if (!CollectionUtils.isEmpty(keys)) {redisTemplate.delete(keys);}} catch (Exception e) {LOG.error("clear failed!", e);}}/*** Optional. This method is not called by the core.** @return The number of elements stored in the cache (not its capacity).*/@Overridepublic int getSize() {Long size = (Long) redisTemplate.execute(new RedisCallback<Long>() {@Overridepublic Long doInRedis(RedisConnection connection) throws DataAccessException {return connection.dbSize();}});LOG.info("getSize: " + size.intValue());return size.intValue();}/*** Optional. As of 3.2.6 this method is no longer called by the core.* <p>* Any locking needed by the cache must be provided internally by the cache provider.** @return A ReadWriteLock*/@Overridepublic ReadWriteLock getReadWriteLock() {return this.readWriteLock;}public static void setRedisTemplate(RedisTemplate<String, Object> redisTemplate) {MybatisRedisCache.redisTemplate = redisTemplate;}
由于redisTemplate是类变量,需要手动注入,再创建一个配置类注入redisTemplate即可:
/*** Created by zhaoyh on 2019-01-22* @author zhaoyh*/
@Component
public class MyBatisHelper {/*** 注入redis* @param redisTemplate*/@Autowired@Qualifier("redisTemplate")public void setRedisTemplate(RedisTemplate<String, Object> redisTemplate) {MybatisRedisCache.setRedisTemplate(redisTemplate);}
}
3.3 mapper文件中加入二级缓存的声明
在任意需要开启二级缓存的mapper配置文件中,加入:
<!-- mapper开启二级缓存 -->
<cache type="XX.XX.MybatisRedisCache"><!-- 定义回收的策略 --><property name="eviction" value="LRU"/><!-- 配置一定时间自动刷新缓存,单位是毫秒 --><property name="flushInterval" value="600000"/><!-- 最多缓存对象的个数 --><property name="size" value="1024"/><!-- 是否只读,若配置可读写,则需要对应的实体类能够序列化 --><property name="readOnly" value="false"/>
</cache>
至此,就完成了基于Redis的MyBatis二级缓存的配置。
4. FAQ
-
二级缓存相比较于一级缓存来说,粒度更细,但是也会更不可控,安全使用二级缓存的条件很难。
-
二级缓存非常适合查询热度高且更新频率低的数据,请谨慎使用。
-
建议在生产环境下关闭二级缓存,使得MyBatis单纯作为ORM框架即可,缓存使用其他更安全的策略。