微服务与Nacos概述-3

流量治理

在微服务架构中将业务拆分成一个个的服务,服务与服务之间可以相互调用,但是由于网络原因或者自身的原因,服务并不能保证服务的100%可用,如果单个服务出现问题,调用这个服务就会出现网络延迟,此时若有大量的网络涌入,会形成任务堆积,最终导致服务瘫痪。

流量是一个系统中最重要的运维参数之一,在具体的应用中,作为产品部署,必须进行压力测试jmeter,需要通过压力测试查找应用的QPS值

在高并发系统中,出于系统保护角度考虑,通常会对流量进行限流;不但在工作中要频繁使用,而且也是面试中的高频考点。注意重点在于最常用的限流算法大致有三种:令牌桶算法,漏桶算法,计数器算法

  • 阿里开源的限流框架 Sentinel 中的匀速排队限流策略,就采用了漏桶算法

  • Nginx中的限流模块 limit_req_zone 也是采用了漏桶算法

总结限流算法

  • 固定窗口算法实现简单,性能高,但是会有临界突发流量问题,瞬时流量最大可以达到阈值的2倍

  • 为了解决临界突发流量,可以将窗口划分为多个更细粒度的单元,每次窗口向右移动一个单元,于是便有了滑动窗口算法

  • 滑动窗口当流量到达阈值时会瞬间掐断流量,所以导致流量不够平滑

  • 想要达到限流的目的,又不会掐断流量,使得流量更加平滑?可以考虑漏桶算法!需要注意的是,漏桶算法通常配置一个FIFO的队列使用以达到允许限流的作用

  • 由于速率固定,即使在某个时刻下游处理能力过剩,也不能得到很好的利用,这是漏桶算法的一个短板。

  • 限流和瞬时流量其实并不矛盾,在大多数场景中,短时间突发流量系统是完全可以接受的。令牌桶算法就是不二之选了,令牌桶以固定的速率v产生令牌放入一个固定容量为n的桶中,当请求到达时尝试从桶中获取令牌

  • 当桶满时,允许最大瞬时流量为n;当桶中没有剩余流量时则限流速率最低,为令牌生成的速率v

  • 如何实现更加灵活的多级限流呢?滑动日志限流算法了解一下!这里的日志则是请求的时间戳,通过计算制定时间段内请求总数来实现灵活的限流。当然,由于需要存储时间戳信息,其占用的存储空间要比其他限流算法要大得多。

限流算法并没有绝对的好劣之分,如何选择合适的限流算法呢?

  • 不妨从性能,是否允许超出阈值,落地成本,流量平滑度,是否允许突发流量以及系统资源大小限制多方面考虑

  • 当然市面上也有比较成熟的限流工具和框架。如Google出品的Guava中基于令牌桶实现的限流组件拿来即用;alibaba开源的面向分布式服务架构的流量控制框架Sentinel是基于滑动窗口实现的。

软件系统的可靠性或者可用性经常会使用x个9表示,其中3个9表示1年8.76小时适用于电脑或服务器,4个9表示52.6分钟适用于企业级设备,5个9表示5.26分钟适用于一般电信级设备。具体生产环境中最容易出现的是一种服务的雪崩效应问题。

RESTful接口的重试实现

1、依赖:spring-retry

2、开启Retry支持,在主类或者配置类上使用EnableRetry注解,一般使用在service层,开启retry功能

@RestController
@EnableRetr
public class TestController {@Autowiredprivate RestTemplate restTemplate;@RequestMapping("/test")@Retryable(value = Exception.class, maxAttempts = 3, backoff =@Backoff(delay = 2000, multiplier = 1.0) )//针对test方法提供了异常重试的支持,value
//是异常类型,maxAttempts最大重试次数,backoff重试的相关参数配置,例如延迟时间等public String test() {String object = restTemplate.getForObject("http://retryprovider/retry", String.class);return object;}@Recover 对应的异常处理public String recover(Exception exception){return exception.getMessage();}
}

Sentinel

Sentinel是阿里提供的基于滑动窗口的流量控制和熔断降级的工具,用于保证分布式系统中应用的可靠性和稳定性,主要依靠于ProcessorSlotChain处理槽链的方式实现,可以将不同功能的Slot采用责任链模式组织起来,以松耦合的方式实现限流、熔断、系统保护等功能

基本概念

  • 限流

  • 熔断

  • 削峰填谷

在Sentinel应用种会引入一个webUI的管理控制器sentinel-dashboard,管理的默认用户名和口令为sentinel/sentinel

  • 查看集群信息以及各个节点的健康状况

  • 可以提供秒级的服务监控统计

  • 提供GUI进行流控规则配置、熔断降级以及配置规则的推送

限流的基本使用

限流主要用于将超过阈值配置的流量在到达目标之前进行处理

常规的限流策略有2种:QPS每秒的访问次数、处理线程个数

常规的限流处理方式有3种:直接拒绝、冷系统预热、匀速排队

1、添加依赖:spring-cloud-starter-alibaba-sentinel

2、添加配置

# Sentinel 控制台地址
spring.cloud.sentinel.transport.dashboard=localhost:8092

3、在访问的控制器上添加配置

@RestController
public class TestController {@GetMapping("/test")//可以使用SentinelResource定义资源名称// @SentinelResource(value = "hello")public String sayHello(String name){return "Hello "+name+"!";}
}

4、可以通过sentinel-dashboard配置指定资源的流控规则。默认为QPS表示每秒钟允许访问的次数,如果在规定的时间内超过阈值则会产生一个异常FlowException,默认处理方式为快速失败

@RestController
public class TestController {@GetMapping("/test")//可以使用SentinelResource定义资源名称@SentinelResource(value = "hello",blockHandler = "helloBlock")public String sayHello(String name){return "Hello "+name+"!";}public String helloBlock(String name, BlockException exception){System.out.println(name+"-->"+exception);if(BlockException.isBlockException(exception)){//限流处理return "限流降级:Block:"+exception.getMessage();}return exception.getMessage();}
}
  • Value:资源名称,必需项(不能为空)

  • blockHandler:处理BlockException的函数名称(可以理解对Sentinel的配置进行方法兜底)。

    • 函数要求:

      • 必须是public修饰

      • 返回类型与原方法一致

      • 参数类型需要和原方法相匹配,并在最后加BlockException类型的参数。

  • 默认需和原方法在同一个类中,若希望使用其他类的函数,可配置blockHandlerClass,并指定blockHandlerClass里面的方法。

    • blockHandlerClass:存放blockHandler的类。对应的处理函数必须是public static修饰,否则无法解析,其他要求:同blockerHandler

    fallback:用于在抛出异常的时候提供fallback处理逻辑(可以理解为对java异常情况方法兜底)。

    fallback函数可以针对所有类型的异常(除了exceptionsToIgnore里面排除掉的异常类型)进行处理。

    函数要求:

    • 返回类型与原方法一致

    • 参数类型需要和原方法相匹配,Sentinel 1.6开始,也可以在方法最后加Throwable类型的参数。

    • 默认需和原方法在同一个类中。若希望使用其他类的函数,可配置fallbackClass,并制定fallbackClass里面的方法。

      fallbackClass:存放fallback的类。对应的处理函数必须static修饰,否则无法解析,其他要求:同fallback。

Sentinal-dashboard的配置

阈值类型:阈值类型QPS或者并发线程数

  • 单机QPS为5即每秒只允许5次请求,超出的请求会被拦截并报错。

流控模式:当出现流控问题,就是超过阈值的处理方法

  • 流控模式有直接、关联和链路三种。在添加限流规则时,点击高级选项,可以选择三种流控模式

    • 1、直接,统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式

    • 2、关联,统计与当前资源相关的另一个资源,触发阈值时对当前资源限流。

    • 3、链路,统计从指定链路访问到本资源的请求,触发阈值时对指定链路限流

  • 总结流控模式

    • 直接模式:对当前资源限流

    • 关联模式:高优先级资源触发阈值,对低优先级资源限流。

    • 链路模式:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流

流控效果有快速失败、Warm Up和排队等待三种,流控效果是指请求达到流控阈值时应该采取的措施,

  • 1、快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • 2、warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

  • 3、排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

流控效果:1、快速失败是QPS超过阈值时,拒绝新的请求。2、warm up是QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。3、排队等待是请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝。

熔断的基本使用

断路器模式,在具体应用中断路器有Hystrix和Sentinel
在这里插入图片描述

状态机包括三个状态

  • closed关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态

  • open打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态

  • half-open半开状态,放行一次请求,根据执行结果来判断接下来的操作。请求成功则切换到closed状态;请求失败则切换到open状态

可以使用Sentinel-dashboard配置熔断规则

Sentinel提供的熔断策略有3种:慢调用RT比例、异常比例、异常个数

@RestController
public class HelloController {@Value("${spring.application.name}")private String appName;@SentinelResource(value = "hello", blockHandler = "handleError",
fallback = "handleException") //可以在控制器中,也可以在业务实现类的方法上@RequestMapping("/hello")public String sayHello(String name) {if(!StringUtils.hasText(name)) throw new
IllegalArgumentException("名称不能为空!");return String.format("[%s] said: hello %s!", appName, name);}public String handleError(String name, BlockException ex) { //流控降级处理ex.printStackTrace();return "error!"; }public String handleException(String name,Throwable t) { //异常降级处理return "参数错误!"; }
}

熔断降级处理

熔断降级设计理念,在限制的手段上,Sentinel 和 Hystrix 采取了完全不一样的方法。

Hystrix 通过线程池隔离的方式,来对依赖资源进行了隔离。这样做的好处是资源和资源之间做到了最彻底的隔离。缺点是除了增加了线程切换的成本,过多的线程池导致线程数目过多,还需要预先给各个资源做线程池大小的分配。

Sentinel 对这个问题采取了两种手段:

1、通过并发线程数进行限制。和资源池隔离的方法不同,Sentinel 通过限制资源并发线程的数量,来减少不稳定资源对其它资源的影响。这样不但没有线程切换的损耗,也不需要您预先分配线程池的大小。

当某个资源出现不稳定的情况下,例如响应时间变长,对资源的直接影响就是会造成线程数的逐步堆积。当线程数在特定资源上堆积到一定的数量之后,对该资源的新请求就会被拒绝。堆积的线程完成任务后才开始继续接收请求。

2、通过响应时间对资源进行降级。除了对并发线程数进行控制以外,Sentinel 还可以通过响应时间来快速降级不稳定的资源。当依赖的资源出现响应时间过长后,所有对该资源的访问都会被直接拒绝,直到过了指定的时间窗口之后才重新恢复。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/31454.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis_主从复制

8. 主从复制 8.1 简介 主从库采用读写分离的方式 读操作:主库、从库都可以处理写操作:首先写到主库执行,然后再将主库同步给从库。 实现读写分离,性能扩展 容灾快速恢复 8.2 主从复制步骤 创建一个目录 ,在root下创建一个m…

hive on tez资源控制

sql insert overwrite table dwintdata.dw_f_da_enterprise2 select * from dwintdata.dw_f_da_enterprise; hdfs文件大小数量展示 注意这里文件数有17个 共计321M 最后是划分为了21个task 为什么会有21个task?不是128M 64M 或者说我这里小于128 每个文件一个map…

(C++)继承

目录 1.继承的概念及定义 1.1继承的概念 1.2继承定义 1.2.1定义格式 1.2.2继承方式和访问限定符 1.2.3继承基类成员访问方式的变化 2.基类和派生类对象赋值转换 3.继承中的作用域 4.派生类的默认成员函数 5.继承与友元 6.继承与静态成员 7.复杂的菱形继承及菱形虚拟…

【脚踢数据结构】链表(1)

(꒪ꇴ꒪ ),Hello我是祐言QAQ我的博客主页:C/C语言,Linux基础,ARM开发板,软件配置等领域博主🌍快上🚘,一起学习,让我们成为一个强大的攻城狮!送给自己和读者的一句鸡汤🤔&…

机器学习基础之《特征工程(3)—特征预处理》

一、什么是特征预处理 通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程 处理前,特征值是数值,处理后,进行了特征缩放 1、包含内容 数值型数据的无量纲化: 归一化 标准化 2、特征预处理API sklearn.preproces…

什么是训练数据?

算法从数据中学习。算法从得到的训练数据中找到关系,形成理解,做出决策,并评估信心。训练数据越好,模型的表现就越好。 实际上,与算法本身一样,训练数据的质量和数量与数据项目的成功有很大关系。 现在&…

Java项目作业~ 通过html+Servlet+MyBatis,完成站点信息的添加功能

需求: 通过htmlServletMyBatis,完成站点信息的添加功能。 以下是站点表的建表语句: CREATE TABLE websites (id int(11) NOT NULL AUTO_INCREMENT,name char(20) NOT NULL DEFAULT COMMENT 站点名称,url varchar(255) NOT NULL DEFAULT ,…

CentOS7 安装远程桌面

换源 设置镜像源为清华源: sudo sed -e s|^mirrorlist|#mirrorlist|g \-e s|^#baseurlhttp://mirror.centos.org/centos|baseurlhttps://mirrors.tuna.tsinghua.edu.cn/centos|g \-i.bak \/etc/yum.repos.d/CentOS-*.repo详见 https://mirrors.tuna.tsinghua.edu.…

尼科彻斯定理

目录 1.题目概述 2.题解 思路分析 具体实现 1.题目概述 验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。 例如: 1^31 2^335 3^37911 4^313151719 输入一个正整数m(m≤100),将…

Oracle 使用 CONNECT_BY_ROOT 解锁层次结构洞察:在 SQL 中导航数据关系

CONNECT_BY_ROOT 是一个在 Oracle 数据库中使用的特殊函数,它通常用于在层次查询中获取根节点的值。在使用 CONNECT BY 子句进行层次查询时,通过 CONNECT_BY_ROOT 函数,你可以在每一行中获取根节点的值,而不仅仅是当前行的值。 假…

Vue3 实现产品图片放大器

Vue3 实现类似淘宝、京东产品详情图片放大器功能 环境&#xff1a;vue3tsvite 1.创建picShow.vue组件 <script lang"ts" setup> import {ref, computed} from vue import {useMouseInElement} from vueuse/core/*获取父组件的传值*/ defineProps<{images:…

从支付或退款之回调处理的设计,看一看抽象类的使用场景

一、背景 抽象类&#xff0c;包含抽象方法和实例方法&#xff0c;抽象方法待继承类去实例化&#xff0c;正是利用该特性&#xff0c;以满足不同支付渠道的差异化需求。 我们在做多渠道支付的时候&#xff0c;接收支付或退款的回调报文&#xff0c;然后去处理。这就意味着&…

【python 深度学习】解决遇到的问题

目录 一、RuntimeError: module compiled against API version 0xc but this version of numpy is 0xb 二、AttributeError: module ‘tensorflow’ has no attribute ‘flags’ 三、conda 更新 Please update conda by running 四、to search for alternate channels that…

Kubernetes 调度 约束

调度约束 Kubernetes 是通过 List-Watch 的机制进行每个组件的协作&#xff0c;保持数据同步的&#xff0c;每个组件之间的设计实现了解耦。 用户是通过 kubectl 根据配置文件&#xff0c;向 APIServer 发送命令&#xff0c;在 Node 节点上面建立 Pod 和 Container。 APIServer…

腾讯云轻量应用服务器和云服务器有什么区别?

腾讯云轻量服务器和云服务器有什么区别&#xff1f;为什么轻量应用服务器价格便宜&#xff1f;是因为轻量服务器CPU内存性能比云服务器CVM性能差吗&#xff1f;轻量应用服务器适合中小企业或个人开发者搭建企业官网、博客论坛、微信小程序或开发测试环境&#xff0c;云服务器CV…

开源数据库Mysql_DBA运维实战 (DDL语句)

DDL DDL语句 数据库定义语言&#xff1a;数据库、表、视图、索引、存储过程. 例如:CREATE DROP ALTER DDL库 定义库{ 创建业务数据库&#xff1a;CREAATE DATABASE ___数据库名___ ; 数据库名要求{ a.区分大小写 b.唯一性 c.不能使用关键字如 create select d.不能单独使用…

unable to write symref for HEAD: Permission denied

今天从gitee上面克隆项目到本地时报错如下 warning: unable to unlink ‘D:/IDEAcode/ruiji1.0/.git/HEAD.lock’: Invalid argument error: unable to write symref for HEAD: Permission denied 解决方法&#xff1a;将要存放项目的文件夹权限修改为完全控制 原先权限&…

W5100S-EVB-PICO 做TCP Server进行回环测试(六)

前言 上一章我们用W5100S-EVB-PICO开发板做TCP 客户端连接服务器进行数据回环测试&#xff0c;那么本章将用开发板做TCP服务器来进行数据回环测试。 TCP是什么&#xff1f;什么是TCP Server&#xff1f;能干什么&#xff1f; TCP (Transmission Control Protocol) 是一种面向连…

十一、结合数字孪生与时间技术进行多维分析设计与实施

大数据可视化中心以主题为分析对象,选择业务分类下的某个主题,可以在数据面板中展示其二维图表,在地图中标记其空间分布,并叠加其相应的二维或三维图层。 1、界面设计 其主界面设计详上图,各部分功能介绍如下: 1.1、主题与图层面板,从上到下,从左到右分别是: ①折…

【1++的数据结构】之二叉搜索树

&#x1f44d;作者主页&#xff1a;进击的1 &#x1f929; 专栏链接&#xff1a;【1的数据结构】 文章目录 一&#xff0c;什么是二叉搜索树二&#xff0c;二叉搜索树的操作及其实现2.1 插入操作及其实现2.2 查找操作及其实现2.3 删除操作及其实现 三&#xff0c;构造及其析构四…