网络流与线性规划24题(写了一半,先鸽下了……)

Network-flows

Ford-Fulkerson算法

typedef long long ll;const int N = 1e5 + 10;int head[N], to[N], nex[N], flow[N], cnt;int vis[N], n, m, s, t;void add(int x, int y, int w) {to[cnt] = y;nex[cnt] = head[x];flow[cnt] = w;head[x] = cnt++;
}ll dfs(int rt, ll now) {if(rt == t) return now;vis[rt] = 1;for(int i = head[rt]; ~i; i = nex[i]) {if(!vis[to[i]] && flow[i] > 0) {ll cur = dfs(to[i], min(now, 1ll * flow[i]));if(cur != -1) {flow[i] -= cur;flow[i ^ 1] += cur;return cur;}}}return -1;
}ll solve() {ll ans = 0, cur;while(true) {cur = dfs(s, 0x3f3f3f3f3f3f3f3f);if(cur == -1) return ans;ans += cur;memset(vis, 0, sizeof vis);}
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);memset(head, -1, sizeof head);n = read(), m = read(), s = read(), t = read();for(int i = 1; i <= m; i++) {int x = read(), y = read(), w = read();add(x, y, w);add(y, x, 0);}printf("%lld\n", solve());return 0;
}

Edmond-Karp

typedef long long ll;const int N = 1e5 + 10;ll head[N], to[N], nex[N], flow[N], cnt;ll last[N], n, m, s, t;ll flo[N];void add(int x, int y, int w) {to[cnt] = y;nex[cnt] = head[x];flow[cnt] = w;head[x] = cnt++;
}bool bfs() {queue<int> q;q.push(s);flo[s] = 0x3f3f3f3f3f3f3f3f;memset(last, -1, sizeof last);while(q.size()) {int temp = q.front();q.pop();if(temp == t) {break;}for(int i = head[temp]; ~i; i = nex[i]) {if(last[to[i]] == -1 && flow[i]) {last[to[i]] = i;flo[to[i]] = min(flo[temp], 1ll * flow[i]);q.push(to[i]);}}}return last[t] != -1;
}ll solve() {ll ans = 0;while(bfs()) {ans += flo[t];for(int i = t; i != s; i = to[last[i] ^ 1]) {flow[last[i]] -= flo[t];flow[last[i] ^ 1] += flo[t];}}return ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);memset(head, -1, sizeof head);n = read(), m = read(), s = read(), t = read();for(int i = 1; i <= m; i++) {int x = read(), y = read(), w = read();add(x, y, w);add(y, x, 0);}printf("%lld\n", solve());return 0;
}

Dinic

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;const int N = 5e5 + 10, inf = 0x3f3f3f3f;struct max_flow {int head[N], to[N], nex[N], cap[N], cnt;int s, t, dep[N], x[N], y[N], f[N];void init() {memset(head, -1, sizeof head), cnt = 0;}void Add(int x, int y, int c) {to[cnt] = y;nex[cnt] = head[x];cap[cnt] = c;head[x] = cnt++;}void add(int x, int y, int c) {Add(x, y, c);Add(y, x, 0);}bool bfs() {queue<int> q;memset(dep, -1, sizeof dep);dep[s] = 0;q.push(s);while(q.size()) {int u = q.front();q.pop();for(int i = head[u]; ~i; i = nex[i]) {if(dep[to[i]] == -1 && cap[i]) {q.push(to[i]);dep[to[i]] = dep[u] + 1;}}}return dep[t] != -1;}int dfs(int rt, int flow) {if(rt == t) return flow;int res = flow;for(int i = head[rt]; ~i; i = nex[i]) {if(dep[to[i]] == dep[rt] + 1 && cap[i]) {int temp = dfs(to[i], min(res, cap[i]));if(temp == 0) dep[to[i]] = -1;res -= temp;cap[i] -= temp;cap[i ^ 1] += temp;}if(res == 0) break;}return flow - res;}int Dinic() {int ans = 0;while(bfs()) {ans += dfs(s, inf);}return ans;}// void print(int rt) {//     for(int i = head[rt]; ~i; i = nex[i]) {//         if(cap[i] || to[i] == s || to[i] == rt + m) continue;//         printf(" %d", to[i] - m);//         print(to[i] - m);//         return ;//     }// }
}dinic;int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);return 0;
}

Mcmf

Spfa

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;typedef long long ll;typedef pair<int, int> pii;const int N = 5e5 + 10, inf = 0x3f3f3f3f;struct min_cost_max_flow {int head[N], cap[N], to[N], nex[N], value[N], cnt;int s, t, dis[N], vis[N], flow[N], pre[N];void init() {memset(head, -1, sizeof head), cnt = 0;}void Add(int x, int y, int w, int c) {to[cnt] = y;nex[cnt] = head[x];value[cnt] = w;cap[cnt] = c;head[x] = cnt++;}void add(int x, int y, int w, int c) {Add(x, y, w, c);Add(y, x, -w, 0);}bool spfa() {queue<int> q;memset(dis, 0x3f, sizeof dis);memset(vis, 0, sizeof vis);q.push(s), dis[s] = 0, vis[s] = 1;flow[s] = 1 << 30;while(q.size()) {int rt = q.front();q.pop(), vis[rt] = 0;for(int i = head[rt]; ~i; i = nex[i]) {if(cap[i] && dis[to[i]] > dis[rt] + value[i]) {dis[to[i]] = dis[rt] + value[i];flow[to[i]] = min(flow[rt], cap[i]);pre[to[i]] = i;if(!vis[to[i]]) {vis[to[i]] = 1;q.push(to[i]);}}}}return dis[t] != 0x3f3f3f3f;}pii Mcmf() {int res = 0, ans = 0;while(spfa()) {int cur = flow[t];res += cur, ans += dis[t] * cur;int now = t;while(now != s) {cap[pre[now]] -= cur;cap[pre[now] ^ 1] += cur;now = to[pre[now] ^ 1];}}return make_pair(res, ans);}
}mcmf;int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);return 0;
}

Dijkstra

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;typedef pair<int, int> pii;const int N = 5e3 + 10, inf = 0x3f3f3f3f;struct edge {int to, capacity, cost, rev;edge() {}edge(int to = 0, int _capacity = 0, int _cost = 0, int _rev = 0) :to(to), capacity(_capacity), cost(_cost), rev(_rev) {}
};
struct Min_Cost_Max_Flow {int V, s, t, H[N + 5], dis[N + 5], PreV[N + 5], PreE[N + 5];vector<edge> G[N + 5];void init(int n) {V = n;for (int i = 0; i <= V; ++i)G[i].clear();}void add(int from, int to, int cost, int cap) {G[from].push_back(edge(to, cap, cost, G[to].size()));G[to].push_back(edge(from, 0, -cost, G[from].size() - 1));}pii mcmf() {int res = 0, f = inf, flow = 0; fill(H, H + 1 + V, 0);while (f) {priority_queue <pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>> > q;fill(dis, dis + 1 + V, inf);dis[s] = 0; q.push(pair<int, int>(0, s));while (!q.empty()) {pair<int, int> now = q.top(); q.pop();int v = now.second;if (dis[v] < now.first)continue;for (int i = 0; i < G[v].size(); ++i) {edge& e = G[v][i];if (e.capacity > 0 && dis[e.to] > dis[v] + e.cost + H[v] - H[e.to]) {dis[e.to] = dis[v] + e.cost + H[v] - H[e.to];PreV[e.to] = v;PreE[e.to] = i;q.push(pair<int, int>(dis[e.to], e.to));}}}if (dis[t] == inf)break;for (int i = 0; i <= V; ++i)H[i] += dis[i];int d = f;for (int v = t; v != s; v = PreV[v])d = min(d, G[PreV[v]][PreE[v]].capacity);f -= d; flow += d; res += d*H[t];for (int v = t; v != s; v = PreV[v]) {edge& e = G[PreV[v]][PreE[v]];e.capacity -= d;G[v][e.rev].capacity += d;}}return make_pair(flow, res);}
}mcmf;int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);return 0;
}

P2756 飞行员配对方案问题(二分图匹配)

二分图匹配问题然后输出匹配方案。

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;const int N = 1e5 + 10, inf = 0x3f3f3f3f;int head[N], to[N], nex[N], cap[N], cnt;int s, t, n, m, dep[N];void Add(int x, int y, int c) {to[cnt] = y;nex[cnt] = head[x];cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int c) {Add(x, y, c);Add(y, x, 0);
}bool bfs() {queue<int> q;memset(dep, -1, sizeof dep);dep[s] = 0;q.push(s);while(q.size()) {int u = q.front();q.pop();for(int i = head[u]; ~i; i = nex[i]) {if(dep[to[i]] == -1 && cap[i]) {q.push(to[i]);dep[to[i]] = dep[u] + 1;}}}return dep[t] != -1;
}int dfs(int rt, int flow) {if(rt == t) return flow;int res = flow;for(int i = head[rt]; ~i; i = nex[i]) {if(dep[to[i]] == dep[rt] + 1 && cap[i]) {int temp = dfs(to[i], min(res, cap[i]));if(temp == 0) dep[to[i]] = 0;res -= temp;cap[i] -= temp;cap[i ^ 1] += temp;}if(res == 0) break;}return flow - res;
}int Dinic() {int ans = 0;while(bfs()) {ans += dfs(s, inf);}return ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);memset(head, -1, sizeof head);scanf("%d %d", &m, &n);cnt = 0, s = 0, t = n + 1;for(int i = 1; i <= m; i++) {add(s, i, 1);}for(int i = m + 1; i <= n; i++) {add(i, t, 1);}int tot = cnt;int x, y;while(scanf("%d %d", &x, &y) && x != -1) {add(x, y, 1); 	}int ans = Dinic();printf("%d\n", ans);for(int i = tot; i < cnt; i += 2) {if(cap[i] == 0 && cap[i ^ 1] == 1) {printf("%d %d\n", to[i ^ 1], to[i]);}}return 0;
}

P5039 [SHOI2010]最小生成树

我们要使a−ba-bab出现在最小生成树集合中那么,必然有a−>ba -> ba>b的所有路径中,每个路径中一定有一条边是大于a−ba-bab边的权值的,

对于每种操作,我们可以看作对选定的边进行 + 1操作,所以我们考虑如何将这个问题转化为网络流模型,

首先对于边权大于w[lab]的边是一定没有影响的,我们考虑边权小于w[a, b]的情况,

我们可以考虑用w[lab]−w[now]+1w[lab] - w[now] + 1w[lab]w[now]+1nowa,nowbnow_a, now_bnowa,nowb两点间的流量的,然后跑一遍la−>lbl_a -> l_bla>lb的最小割就行了,

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;const int N = 1e5 + 10, inf = 0x3f3f3f3f;int head[N], to[N], nex[N], cap[N], cnt;int s, t, n, m, l, dep[N], x[N], y[N], f[N];void Add(int x, int y, int c) {to[cnt] = y;nex[cnt] = head[x];cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int c) {Add(x, y, c);Add(y, x, 0);
}bool bfs() {queue<int> q;memset(dep, -1, sizeof dep);dep[s] = 0;q.push(s);while(q.size()) {int u = q.front();q.pop();for(int i = head[u]; ~i; i = nex[i]) {if(dep[to[i]] == -1 && cap[i]) {q.push(to[i]);dep[to[i]] = dep[u] + 1;}}}return dep[t] != -1;
}int dfs(int rt, int flow) {if(rt == t) return flow;int res = flow;for(int i = head[rt]; ~i; i = nex[i]) {if(dep[to[i]] == dep[rt] + 1 && cap[i]) {int temp = dfs(to[i], min(res, cap[i]));if(temp == 0) dep[to[i]] = 0;res -= temp;cap[i] -= temp;cap[i ^ 1] += temp;}if(res == 0) break;}return flow - res;
}int Dinic() {int ans = 0;while(bfs()) {ans += dfs(s, inf);}return ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);memset(head, -1, sizeof head);scanf("%d %d %d", &n, &m, &l);for(int i = 1; i <= m; i++) {scanf("%d %d %d", &x[i], &y[i], &f[i]);}s = x[l], t = y[l];for(int i = 1; i <= m; i++) {if(i != l && f[i] <= f[l]) {Add(x[i], y[i], f[l] - f[i] + 1);Add(y[i], x[i], f[l] - f[i] + 1);}}printf("%d\n", Dinic());return 0;
}

P5934 [清华集训2012]最小生成树

这道题目与上一道不同的有两点,

  • 可能出现,可选这条边,可不选这条边,那就要使能到这两个点的所有路径中都有一条的权值≥l\geq ll了。
  • 直接删边,代价改成111就好了。
/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;const int N = 4e5 + 10, inf = 0x3f3f3f3f;int head[N], to[N], nex[N], cap[N], cnt;int s, t, n, m, l, dep[N], x[N], y[N], f[N];void Add(int x, int y, int c) {to[cnt] = y;nex[cnt] = head[x];cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int c) {Add(x, y, c);Add(y, x, 0);
}bool bfs() {queue<int> q;memset(dep, -1, sizeof dep);dep[s] = 0;q.push(s);while(q.size()) {int u = q.front();q.pop();for(int i = head[u]; ~i; i = nex[i]) {if(dep[to[i]] == -1 && cap[i]) {q.push(to[i]);dep[to[i]] = dep[u] + 1;}}}return dep[t] != -1;
}int dfs(int rt, int flow) {if(rt == t) return flow;int res = flow;for(int i = head[rt]; ~i; i = nex[i]) {if(dep[to[i]] == dep[rt] + 1 && cap[i]) {int temp = dfs(to[i], min(res, cap[i]));if(temp == 0) dep[to[i]] = 0;res -= temp;cap[i] -= temp;cap[i ^ 1] += temp;}if(res == 0) break;}return flow - res;
}int Dinic() {int ans = 0;while(bfs()) {ans += dfs(s, inf);}return ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);memset(head, -1, sizeof head);scanf("%d %d", &n, &m);for(int i = 1; i <= m; i++) {scanf("%d %d %d", &x[i], &y[i], &f[i]);}scanf("%d %d %d", &s, &t, &l);for(int i = 1; i <= m; i++) {if(f[i] < l) {Add(x[i], y[i], 1);Add(y[i], x[i], 1);}}int ans = Dinic();memset(head, -1, sizeof head), cnt = 0;for(int i = 1; i <= m; i++) {if(f[i] > l) {Add(x[i], y[i], 1);Add(y[i], x[i], 1);}}ans += Dinic();printf("%d\n", ans);return 0;
}

#6001. 「网络流 24 题」太空飞行计划

最大权闭合子图模板

SSS点连向正权值的点(权值累加),负权值的点连向TTT,然后在每个关系中建立流量为无穷的有向边。

跑一遍最大流,最大权值为(累加的权值 - 最小割(最大流)),depdepdep数组标记为不为−1-11的点,即被选中的点。

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;const int N = 1e5 + 10, inf = 0x3f3f3f3f;int head[N], to[N], nex[N], cap[N], cnt;int s, t, n, m, l, ans, dep[N], x[N], y[N], f[N];void Add(int x, int y, int c) {to[cnt] = y;nex[cnt] = head[x];cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int c) {Add(x, y, c);Add(y, x, 0);
}bool bfs() {queue<int> q;memset(dep, -1, sizeof dep);dep[s] = 0;q.push(s);while(q.size()) {int u = q.front();q.pop();for(int i = head[u]; ~i; i = nex[i]) {if(dep[to[i]] == -1 && cap[i]) {q.push(to[i]);dep[to[i]] = dep[u] + 1;}}}return dep[t] != -1;
}int dfs(int rt, int flow) {if(rt == t) return flow;int res = flow;for(int i = head[rt]; ~i; i = nex[i]) {if(dep[to[i]] == dep[rt] + 1 && cap[i]) {int temp = dfs(to[i], min(res, cap[i]));if(temp == 0) dep[to[i]] = -1;res -= temp;cap[i] -= temp;cap[i ^ 1] += temp;}if(res == 0) break;}return flow - res;
}int Dinic() {int ans = 0;while(bfs()) {ans += dfs(s, inf);}return ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);memset(head, -1, sizeof head);scanf("%d %d", &n, &m);s = 0, t = n + m + 1;for(int i = 1, x; i <= n; i++) {scanf("%d", &x);add(s, i, x);ans += x;while(getchar() == ' ') {scanf("%d", &x);add(i, n + x, inf);}}for(int i = 1, x; i <= m; i++) {scanf("%d", &x);add(n + i, t, x);}ans -= Dinic();for(int i = 1, flag = 0; i <= n; i++) {if(dep[i] != -1) {if(!flag) {flag = 1;}else {printf(" ");}printf("%d", i);}}puts("");for(int i = n + 1, flag = 0; i <= n + m; i++) {if(dep[i] != -1) {if(!flag) {flag = 1;}else {printf(" ");}printf("%d", i - n);}}printf("\n%d\n", ans);return 0;
}

Firing

/*Author : lifehappy
*/
// #include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>using namespace std;#define int long longconst int N = 1e6 + 10, inf = 0x3f3f3f3f;int head[N], to[N], nex[N], cap[N], cnt;int s, t, n, m, dep[N], value[N];void Add(int x, int y, int c) {to[cnt] = y;nex[cnt] = head[x];cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int c) {Add(x, y, c);Add(y, x, 0);
}bool bfs() {queue<int> q;memset(dep, -1, sizeof dep);dep[s] = 0;q.push(s);while(q.size()) {int u = q.front();q.pop();for(int i = head[u]; ~i; i = nex[i]) {if(dep[to[i]] == -1 && cap[i]) {q.push(to[i]);dep[to[i]] = dep[u] + 1;}}}return dep[t] != -1;
}int dfs(int rt, int flow) {if(rt == t) return flow;int res = flow;for(int i = head[rt]; ~i; i = nex[i]) {if(dep[to[i]] == dep[rt] + 1 && cap[i]) {int temp = dfs(to[i], min(res, cap[i]));if(temp == 0) dep[to[i]] = -1;res -= temp;cap[i] -= temp;cap[i ^ 1] += temp;}if(res == 0) break;}return flow - res;
}int Dinic() {int ans = 0;while(bfs()) {ans += dfs(s, inf);}return ans;
}signed main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);while(scanf("%lld %lld", &n, &m) != EOF) {memset(head, -1, sizeof head), cnt = 0;s = 0, t = n + 1;int ans = 0;for(int i = 1; i <= n; i++) {int value;scanf("%lld", &value);if(value > 0) {ans += value;add(s, i, value);}else {add(i, t, -value);}}for(int i = 1; i <= m; i++) {int x, y;scanf("%lld %lld", &x, &y);add(x, y, inf * inf);}ans -= Dinic();int res = 0;for(int i = 1; i <= n; i++) {if(dep[i] != -1) {res++;}}printf("%lld %lld\n", res, ans);}return 0;
}

[网络流 24 题]最小路径覆盖

最小路径数为顶点个数−最大匹配数顶点个数- 最大匹配数

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;const int N = 1e6 + 10, inf = 0x3f3f3f3f;int head[N], to[N], nex[N], cap[N], cnt;int s, t, n, m, dep[N], x[N], y[N], f[N];void Add(int x, int y, int c) {to[cnt] = y;nex[cnt] = head[x];cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int c) {Add(x, y, c);Add(y, x, 0);
}bool bfs() {queue<int> q;memset(dep, -1, sizeof dep);dep[s] = 0;q.push(s);while(q.size()) {int u = q.front();q.pop();for(int i = head[u]; ~i; i = nex[i]) {if(dep[to[i]] == -1 && cap[i]) {q.push(to[i]);dep[to[i]] = dep[u] + 1;}}}return dep[t] != -1;
}int dfs(int rt, int flow) {if(rt == t) return flow;int res = flow;for(int i = head[rt]; ~i; i = nex[i]) {if(dep[to[i]] == dep[rt] + 1 && cap[i]) {int temp = dfs(to[i], min(res, cap[i]));if(temp == 0) dep[to[i]] = -1;res -= temp;cap[i] -= temp;cap[i ^ 1] += temp;}if(res == 0) break;}return flow - res;
}int Dinic() {int ans = 0;while(bfs()) {ans += dfs(s, inf);}return ans;
}void print(int rt) {printf("%d ", rt);for(int i = head[rt]; ~i; i = nex[i]) {if(cap[i] || to[i] == s || to[i] == rt + n) continue;print(to[i] - n);return ;}
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);memset(head, -1, sizeof head), cnt = 0;scanf("%d %d", &n, &m);s = 0, t = 2 * n + 1;for(int i = 1; i <= n; i++) {add(s, i, 1);add(i + n, t, 1);}for(int i = 1; i <= m; i++) {int x, y;scanf("%d %d", &x, &y);add(x, y + n, 1);}int ans = Dinic();for(int i = 1; i <= n; i++) {int flag = 1;for(int j = head[i + n]; ~j; j = nex[j]) {if(cap[j] && to[j] != i && to[j] != t) {flag = 0;break;}}if(flag) {print(i);puts("");}}printf("%d\n", n - ans);return 0;
}

[网络流 24 题 魔术球]

最小路径覆盖的变形题。

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;const int N = 1e6 + 10, inf = 0x3f3f3f3f;int head[N], to[N], nex[N], cap[N], cnt;int s, t, n, m, tot, ans, dep[N], x[N], y[N], f[N];void Add(int x, int y, int c) {to[cnt] = y;nex[cnt] = head[x];cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int c) {Add(x, y, c);Add(y, x, 0);
}bool bfs() {queue<int> q;memset(dep, -1, sizeof dep);dep[s] = 0;q.push(s);while (q.size()) {int u = q.front();q.pop();for (int i = head[u]; ~i; i = nex[i]) {if (dep[to[i]] == -1 && cap[i]) {q.push(to[i]);dep[to[i]] = dep[u] + 1;}}}return dep[t] != -1;
}int dfs(int rt, int flow) {if (rt == t)return flow;int res = flow;for (int i = head[rt]; ~i; i = nex[i]) {if (dep[to[i]] == dep[rt] + 1 && cap[i]) {int temp = dfs(to[i], min(res, cap[i]));if (temp == 0)dep[to[i]] = -1;res -= temp;cap[i] -= temp;cap[i ^ 1] += temp;}if (res == 0)break;}return flow - res;
}int Dinic() {int ans = 0;while (bfs()) {ans += dfs(s, inf);}return ans;
}void print(int rt) {for (int i = head[rt]; ~i; i = nex[i]) {if (cap[i] || to[i] == s || to[i] == rt + m)continue;printf(" %d", to[i] - m);print(to[i] - m);return ;}
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);memset(head, -1, sizeof head), cnt = 0;scanf("%d", &n);tot = 0, m = 5000, s = 0, t = 10001;while (++tot) {add(s, tot, 1), add(tot + m, t, 1);for (int i = 1; i < tot; i++) {if (sqrt(i + tot) == int(sqrt(i + tot))) {add(i, tot + m, 1);}}ans += Dinic();if (tot - ans > n)break;}printf("%d\n", tot - 1);for (int i = 1; i < tot; i++) {int flag = 1;for (int j = head[i + m]; ~j; j = nex[j]) {if (cap[j] && to[j] != i && to[j] != t) {flag = 0;break;}}if (flag) {printf("%d", i);print(i);puts("");}}return 0;
}

[网络流 24 题]圆桌聚餐

挺好想的这题,直接二分图匹配,然后输出方案数就行了。

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;const int N = 1e6 + 10, inf = 0x3f3f3f3f;int head[N], to[N], nex[N], cap[N], cnt;int s, t, n, m, dep[N], x[N], y[N], f[N];void Add(int x, int y, int c) {to[cnt] = y;nex[cnt] = head[x];cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int c) {Add(x, y, c);Add(y, x, 0);
}bool bfs() {queue<int> q;memset(dep, -1, sizeof dep);dep[s] = 0;q.push(s);while(q.size()) {int u = q.front();q.pop();for(int i = head[u]; ~i; i = nex[i]) {if(dep[to[i]] == -1 && cap[i]) {q.push(to[i]);dep[to[i]] = dep[u] + 1;}}}return dep[t] != -1;
}int dfs(int rt, int flow) {if(rt == t) return flow;int res = flow;for(int i = head[rt]; ~i; i = nex[i]) {if(dep[to[i]] == dep[rt] + 1 && cap[i]) {int temp = dfs(to[i], min(res, cap[i]));if(temp == 0) dep[to[i]] = -1;res -= temp;cap[i] -= temp;cap[i ^ 1] += temp;}if(res == 0) break;}return flow - res;
}int Dinic() {int ans = 0;while(bfs()) {ans += dfs(s, inf);}return ans;
}void print(int rt) {for(int i = head[rt]; ~i; i = nex[i]) {if(cap[i] || to[i] == s || to[i] == rt + m) continue;printf(" %d", to[i] - m);print(to[i] - m);return ;}
}vector<int> res[300];int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);memset(head, -1, sizeof head), cnt = 0;scanf("%d %d", &m, &n);s = 0, t = n + m + 1;int sum1 = 0;for(int i = 1; i <= m; i++) {int x;scanf("%d", &x);add(i + n, t, x);sum1 += x;}int sum2 = 0;for(int i = 1; i <= n; i++) {int x;scanf("%d", &x);add(s, i, x);sum2 += x;}for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {add(i, j + n, 1);}}int ans = Dinic();if(ans != min(sum1, sum2)) {puts("0");return 0;}printf("%d\n", 1);for(int i = 1; i <= n; i++) {for(int j = head[i]; ~j; j = nex[j]) {if(cap[j] == 0 && to[j] != s) {res[to[j] - n].push_back(i);}}}for(int i = 1; i <= m; i++) {for(auto it : res[i]) {printf("%d ", it);}puts("");}return 0;
}

[网络流 24 题]试题库

有点像二分图最大匹配,其实好像就是吧。

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;const int N = 1e6 + 10, inf = 0x3f3f3f3f;int head[N], to[N], nex[N], cap[N], cnt;int s, t, n, m, dep[N], x[N], y[N], f[N];void Add(int x, int y, int c) {to[cnt] = y;nex[cnt] = head[x];cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int c) {Add(x, y, c);Add(y, x, 0);
}bool bfs() {queue<int> q;memset(dep, -1, sizeof dep);dep[s] = 0;q.push(s);while(q.size()) {int u = q.front();q.pop();for(int i = head[u]; ~i; i = nex[i]) {if(dep[to[i]] == -1 && cap[i]) {q.push(to[i]);dep[to[i]] = dep[u] + 1;}}}return dep[t] != -1;
}int dfs(int rt, int flow) {if(rt == t) return flow;int res = flow;for(int i = head[rt]; ~i; i = nex[i]) {if(dep[to[i]] == dep[rt] + 1 && cap[i]) {int temp = dfs(to[i], min(res, cap[i]));if(temp == 0) dep[to[i]] = -1;res -= temp;cap[i] -= temp;cap[i ^ 1] += temp;}if(res == 0) break;}return flow - res;
}int Dinic() {int ans = 0;while(bfs()) {ans += dfs(s, inf);}return ans;
}void print(int rt) {for(int i = head[rt]; ~i; i = nex[i]) {if(cap[i] || to[i] == s || to[i] == rt + m) continue;printf(" %d", to[i] - m);print(to[i] - m);return ;}
}vector<int> res[50];int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);memset(head, -1, sizeof head), cnt = 0;scanf("%d %d", &m, &n);s = 0, t = n + m + 1;int sum = 0;for(int i = 1; i <= m; i++) {int x;scanf("%d", &x);add(n + i, t, x);sum += x;}for(int i = 1; i <= n; i++) {int tot, x;scanf("%d", &tot);add(s, i, 1);for(int j = 1; j <= tot; j++) {scanf("%d", &x);add(i, x + n, 1);}}int ans = Dinic();if(ans != sum) {puts("No Solution!");return 0;}for(int i = 1; i <= n; i++) {for(int j = head[i]; ~j; j = nex[j]) {if(!cap[j] && to[j] != s) {res[to[j] - n].push_back(i);}}}for(int i = 1; i <= m; i++) {printf("%d: ", i);for(auto it : res[i]) {printf("%d ", it);}puts("");}return 0;
}

[网络流 24 题]最长递增子序列

先跑一次dpdpdp求得sss

对于问题二,先拆点然后对所有dp[i]=1dp[i] = 1dp[i]=1的连一条add(s,i,1)add(s, i, 1)add(s,i,1)的边,对所有dp[i]=sdp[i] = sdp[i]=s的点连一条add(i+n,t,1)add(i + n, t, 1)add(i+n,t,1)的边

然后对i<j,a[i]≤a[j],dp[i]+1=dp[j]i < j, a[i] \leq a[j],dp[i] + 1 = dp[j]i<j,a[i]a[j],dp[i]+1=dp[j],连一条add(i+n,j,1)add(i + n, j, 1)add(i+n,j,1)的边,然后跑一遍最大流即可了。

对于问题二,add(s,1,inf),add(1,n+1,inf)add(s, 1, inf), add(1, n + 1, inf)add(s,1,inf),add(1,n+1,inf),如果dp[n]=sdp[n] = sdp[n]=sadd(n,n+n,inf),add(n+n,T,inf)add(n, n + n, inf), add(n + n, T, inf)add(n,n+n,inf),add(n+n,T,inf)然后跑一遍最大流即可。

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;const int N = 1e6 + 10, inf = 0x3f3f3f3f;int head[N], to[N], nex[N], cap[N], cnt;int s, t, n, m, res, dep[N], x[N], y[N], f[N];void Add(int x, int y, int c) {to[cnt] = y;nex[cnt] = head[x];cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int c) {Add(x, y, c);Add(y, x, 0);
}bool bfs() {queue<int> q;memset(dep, -1, sizeof dep);dep[s] = 0;q.push(s);while(q.size()) {int u = q.front();q.pop();for(int i = head[u]; ~i; i = nex[i]) {if(dep[to[i]] == -1 && cap[i]) {q.push(to[i]);dep[to[i]] = dep[u] + 1;}}}return dep[t] != -1;
}int dfs(int rt, int flow) {if(rt == t) return flow;int res = flow;for(int i = head[rt]; ~i; i = nex[i]) {if(dep[to[i]] == dep[rt] + 1 && cap[i]) {int temp = dfs(to[i], min(res, cap[i]));if(temp == 0) dep[to[i]] = -1;res -= temp;cap[i] -= temp;cap[i ^ 1] += temp;}if(res == 0) break;}return flow - res;
}int Dinic() {int ans = 0;while(bfs()) {ans += dfs(s, inf);}return ans;
}void print(int rt) {for(int i = head[rt]; ~i; i = nex[i]) {if(cap[i] || to[i] == s || to[i] == rt + m) continue;printf(" %d", to[i] - m);print(to[i] - m);return ;}
}const int N1 = 510;int a[N], dp[N];void solve1() {for(int i = 1; i <= n; i++) {dp[i] = 1;for(int j = 1; j < i; j++) {if(a[i] >= a[j]) {dp[i] = max(dp[i], dp[j] + 1);}}res = max(res, dp[i]);}printf("%d\n", res);
}int solve2() {memset(head, -1, sizeof head), cnt = 0, s = 0, t = 2 * n + 1;for(int i = 1; i <= n; i++) {if(dp[i] == 1) {add(s, i, 1);}if(dp[i] == res) {add(i + n, t, 1);}add(i, i + n, 1);for(int j = i + 1; j <= n; j++) {if(a[j] >= a[i] && dp[i] + 1 == dp[j]) {add(i + n, j, 1);}}}int ans = Dinic();printf("%d\n", ans);return ans;
}void solve3() {int ans = solve2();add(s, 1, inf), add(1, 1 + n, inf);if(dp[n] == res) {add(n, n + n, inf);add(n + n, t, inf);}printf("%d\n", Dinic() + ans);
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);scanf("%d", &n);for(int i = 1; i <= n; i++) {scanf("%d", &a[i]);}if(n == 1) {puts("1\n1\n1");return 0;}solve1();solve3();return 0;
}

[网络流 24 题]方格取数

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;const int N = 5e5 + 10, inf = 0x3f3f3f3f;int head[N], to[N], nex[N], cap[N], cnt;int s, t, n, m, dep[N], x[N], y[N], f[N];void Add(int x, int y, int c) {to[cnt] = y;nex[cnt] = head[x];cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int c) {Add(x, y, c);Add(y, x, 0);
}bool bfs() {queue<int> q;memset(dep, -1, sizeof dep);dep[s] = 0;q.push(s);while(q.size()) {int u = q.front();q.pop();for(int i = head[u]; ~i; i = nex[i]) {if(dep[to[i]] == -1 && cap[i]) {q.push(to[i]);dep[to[i]] = dep[u] + 1;}}}return dep[t] != -1;
}int dfs(int rt, int flow) {if(rt == t) return flow;int res = flow;for(int i = head[rt]; ~i; i = nex[i]) {if(dep[to[i]] == dep[rt] + 1 && cap[i]) {int temp = dfs(to[i], min(res, cap[i]));if(temp == 0) dep[to[i]] = -1;res -= temp;cap[i] -= temp;cap[i ^ 1] += temp;}if(res == 0) break;}return flow - res;
}int Dinic() {int ans = 0;while(bfs()) {ans += dfs(s, inf);}return ans;
}void print(int rt) {for(int i = head[rt]; ~i; i = nex[i]) {if(cap[i] || to[i] == s || to[i] == rt + m) continue;printf(" %d", to[i] - m);print(to[i] - m);return ;}
}const int ax[4] = {1, -1, 0, 0}, ay[4] = {0, 0, 1, -1};int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);memset(head, -1, sizeof head), cnt = 0;scanf("%d %d", &n, &m);s = 0, t = n * m + 1;int sum = 0;for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {int x;scanf("%d", &x);sum += x;if((i + j) & 1) {add(s, (i - 1) * m + j, x);for(int k = 0; k < 4; k++) {int x = i + ax[k], y = j + ay[k];if(x < 1 || x > n || y < 1 || y > m) continue;add((i - 1) * m + j, (x - 1) * m + y, inf);}}else {add((i - 1) * m + j, t, x);}}}printf("%d\n", sum - Dinic());return 0;
}

[网络流 24 题]餐巾计划

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;typedef long long ll;typedef pair<ll, ll> pii;const int N = 5e5 + 10;
ll inf = 0x3f3f3f3f3f3f3f3f;ll head[N], cap[N], to[N], nex[N], value[N], cnt;ll n, m, s, t, dis[N], vis[N], flow[N], pre[N];void Add(int x, int y, int w, int c) {to[cnt] = y;nex[cnt] = head[x];value[cnt] = w;cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int w, int c) {Add(x, y, w, c);Add(y, x, -w, 0);
}bool spfa() {queue<int> q;memset(dis, 0x3f, sizeof dis);memset(vis, 0, sizeof vis);q.push(s), dis[s] = 0, vis[s] = 1;flow[s] = 1 << 30;while(q.size()) {int rt = q.front();q.pop(), vis[rt] = 0;for(int i = head[rt]; ~i; i = nex[i]) {if(cap[i] && dis[to[i]] > dis[rt] + value[i]) {dis[to[i]] = dis[rt] + value[i];flow[to[i]] = min(flow[rt], cap[i]);pre[to[i]] = i;if(!vis[to[i]]) {vis[to[i]] = 1;q.push(to[i]);}}}}return dis[t] != 0x3f3f3f3f3f3f3f3f;
}pii Mcmf() {ll res = 0, ans = 0;while(spfa()) {int cur = flow[t];res += cur, ans += dis[t] * cur;int now = t;while(now != s) {cap[pre[now]] -= cur;cap[pre[now] ^ 1] += cur;now = to[pre[now] ^ 1];}}return make_pair(res, ans);
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);memset(head, -1, sizeof head), cnt = 0;int P, M, F, N, S;scanf("%d", &n);s = 0, t = 2 * n + 1;for(int i = 1; i <= n; i++) {int x;scanf("%d", &x);add(s, i, 0, x);add(i + n, t, 0, x);}scanf("%d %d %d %d %d", &P, &M, &F, &N, &S);for(int i = 1; i <= n; i++) {add(s, i + n, P, inf);if(i + 1 <= n) add(i, i + 1, 0, inf);if(i + M <= n) add(i, i + M + n, F, inf);if(i + N <= n) add(i, i + N + n, S, inf);}pii ans = Mcmf();// printf("%d\n", ans.second);cout << ans.second << "\n";return 0;
}

[网络流 24 题]数字梯形

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;typedef long long ll;typedef pair<int, int> pii;const int N = 5e5 + 10, inf = 0x3f3f3f3f;int head[N], cap[N], to[N], nex[N], value[N], cnt;int n, m, s, t, dis[N], vis[N], flow[N], pre[N];void Add(int x, int y, int w, int c) {to[cnt] = y;nex[cnt] = head[x];value[cnt] = w;cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int w, int c) {Add(x, y, w, c);Add(y, x, -w, 0);
}bool spfa() {queue<int> q;memset(dis, 0x3f, sizeof dis);memset(vis, 0, sizeof vis);q.push(s), dis[s] = 0, vis[s] = 1;flow[s] = 1 << 30;while(q.size()) {int rt = q.front();q.pop(), vis[rt] = 0;for(int i = head[rt]; ~i; i = nex[i]) {if(cap[i] && dis[to[i]] > dis[rt] + value[i]) {dis[to[i]] = dis[rt] + value[i];flow[to[i]] = min(flow[rt], cap[i]);pre[to[i]] = i;if(!vis[to[i]]) {vis[to[i]] = 1;q.push(to[i]);}}}}return dis[t] != 0x3f3f3f3f;
}pii Mcmf() {int res = 0, ans = 0;while(spfa()) {int cur = flow[t];res += cur, ans += dis[t] * cur;int now = t;while(now != s) {cap[pre[now]] -= cur;cap[pre[now] ^ 1] += cur;now = to[pre[now] ^ 1];}}return make_pair(res, ans);
}int a[50][50], id[50][50], tot;void solve1() {memset(head, -1, sizeof head), cnt = 0;s = 0, t = 2 * tot + 1;for(int i = 1; i <= n; i++) {add(s, id[1][i], 0, 1);}for(int i = 1; i < m; i++) {for(int j = 1; j <= n + i - 1; j++) {add(id[i][j], id[i][j] + tot, -a[i][j], 1);add(id[i][j] + tot, id[i + 1][j], 0, 1);add(id[i][j] + tot, id[i + 1][j + 1], 0, 1);}}for(int i = 1; i <= n + m - 1; i++) {add(id[m][i], id[m][i] + tot, -a[m][i], 1);add(id[m][i] + tot, t, 0, 1);}printf("%d\n", -Mcmf().second);
}void solve2() {memset(head, -1, sizeof head), cnt = 0;s = 0, t = 2 * tot + 1;for(int i = 1; i <= n; i++) {add(s, id[1][i], 0, 1);}for(int i = 1; i < m; i++) {for(int j = 1; j <= n + i - 1; j++) {add(id[i][j], id[i][j] + tot, -a[i][j], inf);add(id[i][j] + tot, id[i + 1][j], 0, 1);add(id[i][j] + tot, id[i + 1][j + 1], 0, 1);}}for(int i = 1; i <= n + m - 1; i++) {add(id[m][i], id[m][i] + tot, -a[m][i], inf);add(id[m][i] + tot, t, 0, inf);}printf("%d\n", -Mcmf().second);
}void solve3() {memset(head, -1, sizeof head), cnt = 0;s = 0, t = 2 * tot + 1;for(int i = 1; i <= n; i++) {add(s, id[1][i], 0, 1);}for(int i = 1; i < m; i++) {for(int j = 1; j <= n + i - 1; j++) {add(id[i][j], id[i][j] + tot, -a[i][j], inf);add(id[i][j] + tot, id[i + 1][j], 0, inf);add(id[i][j] + tot, id[i + 1][j + 1], 0, inf);}}for(int i = 1; i <= n + m - 1; i++) {add(id[m][i], id[m][i] + tot, -a[m][i], inf);add(id[m][i] + tot, t, 0, inf);}printf("%d\n", -Mcmf().second);
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);scanf("%d %d", &n, &m);for(int i = 1; i <= m; i++) {for(int j = 1; j <= n + i - 1; j++) {scanf("%d", &a[i][j]);id[i][j] = ++tot;}}solve1();solve2();solve3();return 0;
}

[网络流 24 题]运输问题

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;typedef long long ll;typedef pair<int, int> pii;const int N = 5e5 + 10, inf = 0x3f3f3f3f;int head[N], cap[N], to[N], nex[N], value[N], cnt;int n, m, s, t, dis[N], vis[N], flow[N], pre[N];void Add(int x, int y, int w, int c) {to[cnt] = y;nex[cnt] = head[x];value[cnt] = w;cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int w, int c) {Add(x, y, w, c);Add(y, x, -w, 0);
}bool spfa() {queue<int> q;memset(dis, 0x3f, sizeof dis);memset(vis, 0, sizeof vis);q.push(s), dis[s] = 0, vis[s] = 1;flow[s] = 1 << 30;while(q.size()) {int rt = q.front();q.pop(), vis[rt] = 0;for(int i = head[rt]; ~i; i = nex[i]) {if(cap[i] && dis[to[i]] > dis[rt] + value[i]) {dis[to[i]] = dis[rt] + value[i];flow[to[i]] = min(flow[rt], cap[i]);pre[to[i]] = i;if(!vis[to[i]]) {vis[to[i]] = 1;q.push(to[i]);}}}}return dis[t] != 0x3f3f3f3f;
}pii Mcmf() {int res = 0, ans = 0;while(spfa()) {int cur = flow[t];res += cur, ans += dis[t] * cur;int now = t;while(now != s) {cap[pre[now]] -= cur;cap[pre[now] ^ 1] += cur;now = to[pre[now] ^ 1];}}return make_pair(res, ans);
}const int N1 = 110;int a[N1], b[N1], x[N1][N1];int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);memset(head, -1, sizeof head), cnt = 0;scanf("%d %d", &n, &m);s = 0, t = n + m + 1;for(int i = 1; i <= n; i++) {scanf("%d", &a[i]);add(s, i, 0, a[i]);}for(int i = 1; i <= m; i++) {scanf("%d", &b[i]);add(i + n, t, 0, b[i]);}for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {scanf("%d", &x[i][j]);add(i, j + n, x[i][j], inf);}}printf("%d\n", Mcmf().second);memset(head, -1, sizeof head), cnt = 0;for(int i = 1; i <= n; i++) {add(s, i, 0, a[i]);}for(int i = 1; i <= m; i++) {add(i + n, t, 0, b[i]);}for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {add(i, j + n, -x[i][j], inf);}}printf("%d\n", -Mcmf().second);return 0;
}

[网络流 24 题]分配问题

/*Author : lifehappy
*/
#include <bits/stdc++.h>using namespace std;typedef long long ll;typedef pair<int, int> pii;const int N = 5e5 + 10, inf = 0x3f3f3f3f;int head[N], cap[N], to[N], nex[N], value[N], cnt;int n, m, s, t, dis[N], vis[N], flow[N], pre[N];void Add(int x, int y, int w, int c) {to[cnt] = y;nex[cnt] = head[x];value[cnt] = w;cap[cnt] = c;head[x] = cnt++;
}void add(int x, int y, int w, int c) {Add(x, y, w, c);Add(y, x, -w, 0);
}bool spfa() {queue<int> q;memset(dis, 0x3f, sizeof dis);memset(vis, 0, sizeof vis);q.push(s), dis[s] = 0, vis[s] = 1;flow[s] = 1 << 30;while(q.size()) {int rt = q.front();q.pop(), vis[rt] = 0;for(int i = head[rt]; ~i; i = nex[i]) {if(cap[i] && dis[to[i]] > dis[rt] + value[i]) {dis[to[i]] = dis[rt] + value[i];flow[to[i]] = min(flow[rt], cap[i]);pre[to[i]] = i;if(!vis[to[i]]) {vis[to[i]] = 1;q.push(to[i]);}}}}return dis[t] != 0x3f3f3f3f;
}pii Mcmf() {int res = 0, ans = 0;while(spfa()) {int cur = flow[t];res += cur, ans += dis[t] * cur;int now = t;while(now != s) {cap[pre[now]] -= cur;cap[pre[now] ^ 1] += cur;now = to[pre[now] ^ 1];}}return make_pair(res, ans);
}const int N1 = 110;int x[N1][N1];int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);scanf("%d", &n);for(int i = 1; i <= n; i++) {for(int j = 1; j <= n; j++) {scanf("%d", &x[i][j]);       }}s = 0, t = n + n + 1;memset(head, -1, sizeof head), cnt = 0;for(int i = 1; i <= n; i++) {add(s, i, 0, 1);}for(int i = 1; i <= n; i++) {add(i + n, t, 0, 1);}for(int i = 1; i <= n; i++) {for(int j = 1; j <= n; j++) {add(i, j + n, x[i][j], 1);}}printf("%d\n", Mcmf().second);memset(head, -1, sizeof head), cnt = 0;for(int i = 1; i <= n; i++) {add(s, i, 0, 1);}for(int i = 1; i <= n; i++) {add(i + n, t, 0, 1);}for(int i = 1; i <= n; i++) {for(int j = 1; j <= n; j++) {add(i, j + n, -x[i][j], 1);}}printf("%d\n", -Mcmf().second);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314028.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数字(进制/二分/组合数学)

数字 求解满足从n1到2n中有恰好m个数字含有k个1的n&#xff0c;并求出个数 首先看到二进制的问题&#xff0c;我们需要寻找性质&#xff0c;首先考虑n1和2n的性质&#xff0c;然后这道题中我们设f(n,k)表示n1到2n中的数字含k个1的个数。 然后考虑f(n1,k)f(n,k)[2n1含k个1]&am…

.NET CORE 怎么样从控制台中读取输入流

从Console.ReadList/Read 的源码中&#xff0c;可学习到.NET CORE 是怎么样来读取输入流。也可以学习到是如何使用P/Invoke来调用系统APIConsole.ReadList 的源码为[MethodImplAttribute(MethodImplOptions.NoInlining)]public static string ReadLine(){return In.ReadLine();…

变量(网络流模型)

变量 首先最终答案的形式一定是每个变量前面对应一个系数&#xff0c;然后加上一些绝对值&#xff0c;由于每个变量只有两种取法&#xff0c;所以我们考虑使用最小割处理&#xff0c;对于每个变量建一个点分别连到S和T&#xff0c;然后表示选择取哪个&#xff0c;然后会有一边是…

使用VS Code 开发.NET CORE 程序指南

1. 前言近两年来&#xff0c;很多前端的同学都开始将 VSCode 作为前端主力开发工具&#xff0c;其丰富的扩展给程序开发尤其是前端开发带来了很多便利&#xff0c;但是作为微软主力语言的 .NET&#xff0c;却由于有宇宙第一IDE Visual Studio存在&#xff0c;很少有看到有后端同…

珂朵莉树

珂朵莉树 简要 珂朵莉树的核心操作&#xff1a;split 实际很简单&#xff0c;一个集合中&#xff0c;有一部分需要修改&#xff0c;而另一部分不需要修改&#xff0c;就把集合拆开&#xff0c;拆成两部分。 珂朵莉树的推平操作&#xff1a;assign 珂朵莉树的复杂度是由ass…

2019-03-13-算法-进化(鸡蛋掉落)

题目描述 你将获得 K 个鸡蛋&#xff0c;并可以使用一栋从 1 到 N 共有 N 层楼的建筑。 每个蛋的功能都是一样的&#xff0c;如果一个蛋碎了&#xff0c;你就不能再把它掉下去。 你知道存在楼层 F &#xff0c;满足 0 < F < N 任何从高于 F 的楼层落下的鸡蛋都会碎&…

P3810 【模板】三维偏序(陌上花开)

P3810 【模板】三维偏序&#xff08;陌上花开&#xff09; cdq分治的模板题目&#xff0c;用cdq分治处理点对的问题&#xff0c;首先按照第一维排序&#xff0c;然后分治&#xff0c;这样就可以每次考虑二三维即可&#xff0c;然后就可以利用树状数组求解了&#xff0c;然后一…

用pythonnet为计算机视觉做图像整理

中国的.NETer是国内技术的另类&#xff0c;当他们强调.NET也可以做啥啥时都会给别的技术藐视&#xff0c;毕竟主流都不用.NET。本人这几年其实花在.NET时间也少&#xff0c;都投入在Python/Go社区。可我还是有点工作外的寄托&#xff0c;就是让.NET也有一个很好的推广&#xff…

ABP虚拟文件系统(VirtualFileSystem)实例------定制菜单栏显示用户姓名

ABP默认的MVC启动模板在登录后, 右上角显示的是用户名:如果想让它显示用户的姓名该如何做呢?这就需要用到ABP一个非常强大的功能------虚拟文件系统.前期准备使用ABP CLI创建一个名为AbpStudy的ASP.NET MVC项目:abp new AbpStudy关于MVC的启动模板可以看文档, 这里就不赘述.虚…

序列计数(动态规划/自动机/前缀和优化)

序列计数 对于一个小写字母的序列每次可以将相邻两个不同的小写字母都变为二者之一&#xff0c;可以进行无限次这样的操作&#xff0c;求解可以产生多少种不同的序列。 首先我们不能考虑操作&#xff0c;而是考虑合法序列&#xff0c;显然最后会形成若干个区间&#xff0c;然…

概率期望dp

概率期望 LOOPS dp[i][j]dp[i][j]dp[i][j]表示从i,ji, ji,j到r,cr, cr,c的期望&#xff0c;有dp[i][j]p0dp[i][j]p1dp[i][j1]p2dp[i1][j]2dp[i][j] p_0 \times dp[i][j] p_1 \times dp[i][j 1] p_2 \times dp[i 1][j] 2dp[i][j]p0​dp[i][j]p1​dp[i][j1]p2​dp[i1][j]2…

2019-03-13-算法-进化(验证回文串)

题目描述 给定一个字符串&#xff0c;验证它是否是回文串&#xff0c;只考虑字母和数字字符&#xff0c;可以忽略字母的大小写。 说明&#xff1a;本题中&#xff0c;我们将空字符串定义为有效的回文串。 示例 1: 输入: "A man, a plan, a canal: Panama" 输出: t…

.NET中国峰会 参与意愿调查

2014年微软组织成立.NET基金会&#xff0c;微软在成为主要的开源参与者的道路上又前进了一步。2014年以来已经有众多知名公司加入.NET基金会, 仅在平台项目中&#xff0c;.NET平台上有87&#xff05;贡献者其实不在Microsoft工作。将.NET基金会变成一个更加多样化和成员驱动的组…

2019-03-14-算法-进化(两个数组的交集 II)

题目描述 给定两个数组&#xff0c;编写一个函数来计算它们的交集。 示例 1: 输入: nums1 [1,2,2,1], nums2 [2,2] 输出: [2,2]示例 2: 输入: nums1 [4,9,5], nums2 [9,4,9,8,4] 输出: [4,9]说明&#xff1a; 输出结果中每个元素出现的次数&#xff0c;应与元素在两个数…

方案计数(带修计数题/线段树)

方案计数 对于一个n个队员&#xff0c;每个队员有一个权值Vi&#xff0c;然后每次选择三个权值相同的A类队员&#xff0c;两个权值小于A类的B类队员&#xff0c;并且B类队员要在A类队员两侧。 Q次操作&#xff0c;每次限制或解除限制一个队员成为A类队员。 首先枚举中间的A类…

线性基专题

线性基 P3812 【模板】线性基 #include <bits/stdc.h>using namespace std;typedef long long ll;struct linearbasis {ll base[64], flag, cnt;void add(ll x) {for(int i 62; ~i; i--) {if(x >> i & 1) {if(!base[i]) {base[i] x;return ;}x ^ base[i];}…

听我的!美国科技公司这样做Code Review

Code Review&#xff0c;在当代的软件开发中占有重要的一环。虽然国内各大主流公司都已经参照国外同行设立了比较严格的Code Review机制&#xff0c;但是还是有好多大型软件公司以及中小型软件公司还未推行这一重要制度。那么在美国的科技企业中&#xff0c;Code Review推行的怎…

无向图三元环计数

无向图三元环计数 这个做法的思想还是很巧妙的&#xff0c;首先我们考虑枚举&#xff0c;暴力的方法就是枚举三个点O(n3)O(n^3)O(n3)&#xff0c;枚举一个点然后枚举出边&#xff0c;然后再枚举出点的出边&#xff0c;然后考虑这个做法的复杂度。对于每条边分析&#xff0c;它…

2019-03-14-算法-进化(移动零)

题目描述 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 示例: 输入: [0,1,0,3,12] 输出: [1,3,12,0,0]说明: 必须在原数组上操作&#xff0c;不能拷贝额外的数组尽量减少操作次数 /*** 思路1&#xff1a;…

美味果冻(牛客练习赛53B)

美味果冻 ∑i1n∑j1ii⌊ij⌋j∑i1n∑jinj⌊ji⌋i\sum_{i 1} ^{n} \sum_{j 1} ^{i} i \times \lfloor \frac{i}{j} \rfloor ^ j\\ \sum_{i 1} ^{n} \sum_{j i} ^{n} j \times \lfloor \frac{j}{i} \rfloor ^ i\\ i1∑n​j1∑i​i⌊ji​⌋ji1∑n​ji∑n​j⌊ij​⌋i 接下来只…