Hugging Face 的文本生成和大语言模型的开源生态

[更新于 2023 年 7 月 23 日: 添加 Llama 2。]

文本生成和对话技术已经出现多年了。早期的挑战在于通过设置参数和分辨偏差,同时控制好文本忠实性和多样性。更忠实的输出一般更缺少创造性,并且和原始训练数据更加接近,也更不像人话。最近的研究克服了这些困难,并且友好的交互页面能让每个人尝试这些模型。如 ChatGPT 的服务,已经把亮点放在强大的模型如 GPT-4,并且引发了爆发式的开源替代品变成主流如 Llama。我们认为这些技术将持续很长一段时间,并且会越来越集成到日常产品中。

这篇博客分成一下几个部分:

  1. 文本生成的简明背景

  2. 许可证

  3. Hugging Face 的生态中面向大语言模型的服务

  4. 参数高效的微调

文本生成的简明背景

文本生成模型本质上是以补全文本或者根据提示词生成文本为目的训练的。补全文本的模型被称之为条件语言模型 (Causal Language Models),有著名的例子比如 OpenAI 的 GPT-3 和 Meta AI 的 Llama。

d0ddc86d82d58fc453ba0e08c505abe8.png
Causal LM Output

下面你最好要了解型微调,这是把一个大语言模型中的知识迁移到另外的应用场景的过程,我们称之为一个 下游任务 。这些任务的形式可以是根据提示的。模型越大,就越能泛化到预训练数据中不存在,但是可以在微调中学习到的提示词上。

条件语言模型有采用基于人类反馈的强化学习 (Reinforcement Learning from Human Feedback, RLHF)。这个优化过程主要基于答复文本的自然性和忠实性,而不是答复的检验值。解释 RLHF 的工作原理超出了本博客的范围,但是你可以在 这里 了解。

举例而言,GPT-3 是一个条件 基本 语言模型,作为 ChatGPT 的后端,通过 RLHF 在对话和提示文本上做微调。最好对这些模型做区分。

在 Hugging Face Hub 上,你可以同时找到条件语言模型和在提示文本上微调过的条件语言模型 (这篇博客后面会给出链接)。Llama 是最早开源,并且能超过闭源模型的大语言模型之一。一个由 Together 领导的研究团队已经复线了 Llama 的数据集,称之为 Red Pajama,并且已经在上面训练和微调了大语言模型。你可以在 这里 了解。以及在 Hugging Face Hub 上找到 模型。截止本博客写好的时候,三个最大的开源语言模型和其许可证分别为 MosaicML 的 MPT-30B,Salesforce 的 XGen 和 TII UAE 的 Falcon,全都已经在 Hugging Face Hub 上开源了。

最近,Meta 开放了 Llama 2,其许可证允许商业用途。截止目前 Llama 2 能在各种指标上超过任何其他开源模型。Llama 2 在 Hugging Face Hub 上的 checkpoint 在 transformers 上兼容,并且最大的 checkpoint 人们都可以在 HuggingChat 上尝试。你可以通过 这篇博客 学习到如何在 Llama 2 上微调,部署和做提示词。

第二种文本生成模型通常称之为文本到文本的生成模型。这些模型在文本对的数据集上训练,这些数据集或者是问答形式,或者是提示和反馈的形式。最受欢迎的是 T5 和 BART (目前为止以及不是最新的技术了)。Google 最近发布了 FLAN-T5 系列的模型。FLAN 是最近为提示任务设计的技术,而 FLAN-T5 便是完全由 T5 用 FLAN 微调得到的模型。目前为止,FLAN-T5 系列的模型是最新的技术,并且开源,可以在 Hugging Face Hub 上看到。注意这和用条件语言模型在提示任务的微调下是不一样的,尽管其输入和输出形式类似。下面你能看到这些模型的原理。

c76565ac74676ebde66f7bf346cf9090.png
FLAN-T5 Illustration

拥有更多开源的文本生成模型能让公司保证其数据隐私,部署下游更快,并且减少购买闭源 API 的支出。Hugging Face Hub 上所有开源的条件语言模型都能在 这里 找到,并且文本到文本的生成模型都能在 这里 找到。

Hugging Face 用爱和 BigScience 与 BigCode 创造的模型 💗

Hugging Face 引领了两家科研初创 BigScience 和 BigCode。它们分别创造了两个大语言模型 BLOOM 🌸 和 StarCoder 🌟。

BLOOM 是一个以 46 种自然语言和 13 种编程语言训练的条件语言模型,是第一个比 GPT-3 有更多参数量的开源模型。你能在 BLOOM 的文档 上下载所需的所有 checkpoint。

StarCoder 是一个以 GitHub 上可访问的代码作为数据集,以 Fill-in-the-Middle 形式训练的语言模型。它不是以提示文本来微调的,所以它更适合对给定代码做补全任务,比如把 Python 翻译到 C++,解释概念 (什么是递归),或者假扮终端。你可以在 这里 找到 StarCoder 所有的 checkpoints。它也有对应的 VSCode 扩展。

本博客中提及的模型,使用代码段都或者在模型主页,或者在该类模型的文档中。

许可证

许多文本生成模型,要么是闭源的,要么是许可证限制商业使用。幸运的是,开源模型开始出现,并且受社区青睐,用于进一步开发、微调、部署到项目中。下面你能找到一些完全开源的大型条件语言模型。

  • Falcon 40B

  • XGen

  • MPT-30B

  • Pythia-12B

  • RedPajama-INCITE-7B

  • OpenAssistant (Falcon variant)

有两个代码生成模型,BigCode 的 StarCoder 和 Salesforce 的 Codegen。它们提供了不同大小的模型 checkpoint。除了 在提示文本上微调的 Codegen 之外,使用了开源或者 open RAIL 许可证。

Hugging Face Hub 也有许多为提示文本或聊天微调的模型,根据你的需求不同,可以选择不同风格和大小。

  • MPT-30B-Chat,Mosaic ML,使用 CC-BY-NC-SA 许可证,不允许商业用途。但是,MPT-30B-Instruct 使用 CC-BY-SA 3.0 许可证,允许商业使用。

  • Falcon-40B-Instruct 和 Falcon-7B-Instruct 都使用 Apache 2.0 许可证,所以允许商业使用。

  • 另外一系列受欢迎的模型是 OpenAssistant,部分是在 Meta 的 Llama 使用个性化的提示文本微调得到的。因为原本的 Llama 只允许研究用途,OpenAssistant 中使用 Llama 的部分不能完全开源。但是,也有 OpenAssistant 模型建立在完全开源的模型之上,比如 Falcon 或者 pythia。

  • StarChat Beta 是 StarCoder 通过提示文本微调的版本,使用 BigCode Open RAIL-M v1 许可证,允许商用。Salesforce 的用提示文本微调的模型, XGen model,只允许研究用途。

如果你想要用一个现成的提示文本数据集微调模型,你需要知道它是怎么来的。一些现成的提示文本数据集要么是由大量人工编写,要么是现有的模型的输出 (比如 ChatGPT 背后的模型)。Stanford 的 ALPACA 数据集由 ChatGPT 背后的数据集的输出组成。另外,不少人工编写的数据集是开源的,比如 oasst1 (由数千名志愿者输出!) 或者 databricks/databricks-dolly-15k。如果你想自己创建数据集,那你可以看 the dataset card of Dolly 来学习创建提示文本数据集。模型在数据集上微调的过程可以分布式进行。

你可以通过如下表格了解一些开源或者开放的模型。

ModelDatasetLicenseUse
Falcon 40BFalcon RefinedWebApache-2.0文本生成
SalesForce XGen 7B由 C4, RedPajama 和其他数据集混合Apache-2.0文本生成
MPT-30B由 C4, RedPajama 和其他数据集混合Apache-2.0文本生成
Pythia-12BPileApache-2.0文本生成
RedPajama INCITE 7BRedPajamaApache-2.0文本生成
OpenAssistant Falcon 40Boasst1 和 DollyApache-2.0文本生成
StarCoderThe StackBigCode OpenRAIL-M代码生成
Salesforce CodeGenStarcoder DataApache-2.0代码生成
FLAN-T5-XXLgsm8k, lambada, 和 esnliApache-2.0文本到文本生成
MPT-30B ChatShareGPT-Vicuna, OpenAssistant Guanaco 和更多CC-By-NC-SA-4.0聊天
MPT-30B Instructduorc, competition_math, dolly_hhrlhfCC-By-SA-3.0提示任务
Falcon 40B InstructbaizeApache-2.0提示任务
Dolly v2DollyMIT文本生成
StarChat-βOpenAssistant GuanacoBigCode OpenRAIL-M代码提示任务
Llama 2非公开的数据集Custom Meta License (允许商用)文本生成

Hugging Face 的生态中面向大语言模型的服务

文本生成推理

使用这些大模型为多用户提供并发服务时,想要降低响应时间和延迟是一个巨大的挑战。为了解决这个问题,Hugging Face 发布了 text-generation-inference (TGI),这是一个开源的大语言模型部署解决方案,它使用了 Rust、Python 和 gRPC。TGI 被整合到了 Hugging Face 的推理解决方案中,包括 Inference Endpoints 和 Inference API,所以你能通过简单几次点击创建优化过的服务接入点,或是向 Hugging Face 的推理 API 发送请求,而不是直接将 TGI 整合到你的平台里。

7029e9fb1e0d98677413bbb9366d5e56.png
Screenshot from HuggingChat

当前 TGI 助力实现了 HuggingChat,这是 Hugging Face 的开源 LLM 聊天界面。目前这项服务背后是来自 OpenAssistant 的模型。你可以随意和 HuggingChat 聊天,并且使用网页搜索功能来检索当前网页的内容。你还可以为每次响应提供反馈,供模型的作者进行优化训练。HuggingChat 的界面同样也是 开源 的,我们正持续不断完善它,争取加入更多功能,比如在聊天过程中生成图片。

46e42eb3c49a1a54425fe37524bbf1f6.png
HuggingChat Search

最近,Hugging Face Spaces 上发布了用于 HuggingChat 的 Docker 模板。这样一来每个人都可以轻松部署和自定义自己的 HuggingChat 实例了。你可以在 这里 基于众多大语言模型 (包括 Llama 2) 创建自己的实例。

671582bdd37c35de1976e82640300b79.png
HuggingChat Space

如何寻找最佳模型?

Hugging Face 设立了一个 大语言模型排名。该排名是通过社区提交的模型在不同指标上的测试结果在 Hugging Face 的集群上的表现评估的。如果你无法找到你想要的模型或者方向,你可以在 这里 设置过滤条件。

20fb1d01ad679085dc31a02f89169bfd.png
Open LLM Leaderboard

你也能找到 大语言模型的表现排名,它评估了 Hugging Face Hub 上大语言模型输出的中间值。

参数高效的微调 (PEFT)

如果你想用你自己的数据集来微调一个模型,在客户端硬件上微调并部署基本是不可能的 (因为提示模型和原本模型的大小一样)。PEFT 是一个实现参数高效的微调技术的库。这意味着,不需要训练整个模型,你只需要训练少量参数,允许更快速的训练而只有非常小的性能损失。通过 PEFT,你可以使用 LoRA,prefix tuning, prompt tuning 和 p-tuning。

以下更多资源可以帮助你了解和文本生成有关的更多信息。

更多资源

  • 我们和 AWS 一起发布了基于 TGI 的 LLM 开发的深度学习容器,称之为 LLM Inference Containers。戳 这里 了解。

  • 文本生成任务页面。

  • PEFT 发布的 博客。

  • 阅读了解 Inference Endpoints 如何使用 TGI。

  • 阅读 如何用 Transformers,PEFT 和提示词微调 Llama 2。

🤗 宝子们可以戳 阅读原文 查看文中所有的外部链接哟!


英文原文: https://hf.co/blog/os-llms

原文作者: Merve Noyan

译者: Vermillion-de

审校/排版: zhongdongy (阿东)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/31287.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

16通道AD采集FMC子卡推荐哪些?

FMC149是一款16通道65MHz采样率14位直流耦合AD采集FMC子卡,符合VITA57.1规范,可以作为一个理想的IO模块耦合至FPGA前端,16通道AD通过FMC连接器(HPC)连接至FPGA从而大大降低了系统信号延迟。 该板卡支持板上可编程采样…

计算机视觉的应用9-视觉领域中的61个经典数据集【大集合】的应用与实战

大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用9-视觉领域中的61个经典数据集【大集合】的应用与实战,我们都知道计算机视觉是一门研究如何使计算机能够理解和解释数字图像或视频的技术和方法。在计算机视觉领域中,数据集是非常重要的资源,它们可以用于训练和评估…

多货币多汇率跨境电子商城建设(仓储管理、网络安全)

多货币多汇率跨境电子商城建设需要考虑到多个方面,包括仓储管理、网络安全、货币兑换、物流配送等。以下是具体的介绍: 一、仓储管理 仓储管理是跨境电子商城的重要组成部分,需要考虑到商品的存储、管理和分拣等环节。以下是需要注意的几个…

Qt视频播放器

一、设置好ui界面二、打开文件槽函数1.QDir::homePath()作用介绍2.QFileDialog::getOpenFileName()介绍3.QFileInfo介绍4.player 指针解释5.打开文件槽函数完整代码 三、视频播放器初始化1.QMediaPlayer()函数2.设置时间间隔的作用3. QGraphicsScene介绍4.QGraphicsVideoItem介…

11.Eclipse 注释模板的说明及设置

1.在eclipse中点击Window——>java——>Code Style——>CodeTemplates——>Comments 2.常用Variable 3. 我的注释模板 ①Files 文件 /** * Title: ${file_name}* Description: ${todo}* author Jeremy* date ${currentDate:date(yyyy-MM-dd hh:mm:ss)} */ ②Typ…

Python-OpenCV中的图像处理-图像阀值

Python-OpenCV中的图像处理-图像阀值 图像阈值单阈值自适应阈值Otsus二值化 图像阈值 单阈值 与名字一样,这种方法非常简单。但像素值高于阈值时,我们给这个像素赋予一个新值(可能是白色),否则我们给它赋予另外一种颜…

libheif —— 2、编写苹果、小米的.heic图片查看器

效果图 .heic简介 HEIC,是iOS 11更新后,iPhone 7及其后硬件,在拍摄照片时的默认图像存储格式。 HEIC是一种图像格式,上线时间还比较短,只有4年左右。自iOS 11和macOS High Sierra(10.13)内测开始…

Redis的AOF持久化

除了RDB持久化功能之外,Redis还提供了AOF持久化功能。与RDB 持久化通过保存数据库中的键值对来记录数据库状态不同,AOF持久化是通过保存Redis服务器所执行的写命令来记录数据库状态的,如下图所示。 举个例子,如果我们对空白的数据…

uniapp开发小程序-分包(微信错误码:800051)

在使用uniapp开发小程序时,上传的时候因为文件过大,显示上传失败。 以下是开发过程中遇到的问题及解决方法: 1. 问题一:因为文件过大,显示上传失败 ①尝试过把本地使用的图片压缩到最小; ②把图片转换为网…

MongoDB安装和配置

一、MongoDB安装和配置 1、进入官网下载你所需要的安装版本,点击直通官网 Step1:进入官网后,将看到如下界面,点击上方导航栏Products,找到Community Server Step2:选择自己需要的版本、系统和压缩方式 2、下…

【Linux】系统内核中System.map中字段含义解释

可以通过命令行过来初始化内容 cat System.map-4.18.0-193.el8.x86_64 | grep pci | grep initcall "T":表示该符号是一个全局函数,可以被其他模块或文件访问。 "D":表示该符号是一个全局数据对象,可以被其…

Python爬虫的解析(学习于b站尚硅谷)

目录 一、xpath  1.xpath插件的安装  2. xpath的基本使用  (1)xpath的使用方法与基本语法(路径查询、谓词查询、内容查询(使用text查看标签内容)、属性查询、模糊查询、逻辑运算)  (2&a…

Vc - Qt - 绘制绿色矩形

要在Qt中绘制一个绿色矩形&#xff0c;您需要创建一个自定义的QWidget或QGraphicsView类&#xff0c;在其绘制事件中使用QPainter来绘制形状。 以下是一个简单的示例&#xff0c;演示如何在QWidget中绘制一个绿色矩形&#xff1a; #include <QWidget> #include <QPain…

Linux学习之sed删除、追加、插入、更改、读写文件、下一行、打印、退出和seq命令

cat /etc/redhat-release看到操作系统是CentOS Linux release 7.6.1810&#xff0c;uname -r看到内核版本是3.10.0-957.el7.x86_64&#xff0c;sed --version可以看到sed版本是4.2.2。 echo a : 1 : good : g >> sed_daicpnrwq.txt echo b : 2 : well : w >> sed…

AttentionFreeTransformer 源码解析(一):AFTFull、AFTSimple、AFTLocal

我觉得源码写的很好懂&#xff0c;我就不加注释了&#xff0c;直接上计算流程图。 AFTFull class AFTFull(nn.Module):def __init__(self, max_seqlen, dim, hidden_dim64):super().__init__()max_seqlen: the maximum number of timesteps (sequence length) to be fed indim…

WordPress博客发布到公网可访问【 windows系统及linux系统操作】

文章目录 1. 免费注册并下载安装cpolar内网穿透1.1 windows系统1.2 linux系统 2. 将内网映射到公网3. 获取所映射的公网地址 要将自己搭建的个人WordPress博客网站发布到公网可访问&#xff0c;比较常规的做法是买服务器、域名&#xff0c;将其部署到服务器上&#xff0c;备案发…

断续模式(DCM)与连续模式(CCM)

断续模式&#xff08;DCM&#xff09;与连续模式&#xff08;CCM)是开关电源最常用的两种工作模式。当初级开关管导通前&#xff0c;初级绕组还存在能量&#xff0c;不完全传递到次级&#xff0c;这种情况就叫连续模式。若初级绕组能量完全传递到次级&#xff0c;则为断续模式。…

linux鲁班猫代码初尝试[编译镜像][修改根文件系统重编译]

编译镜像 官方百度云盘资料:https://doc.embedfire.com/linux/rk356x/quick_start/zh/latest/quick_start/baidu_cloud/baidu_cloud.html 解压虚拟机压缩包:"鲁班猫\8-SDK源码压缩包\开发环境虚拟机镜像\ubuntu20.04.7z"后既可以用VMware打开,打开后可以看到已经有…

Java顺序表解析与应用

一、顺序表概念 顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构&#xff0c;一般情况下采用数组存储。在数组上完成数据的增删查改。 二、主要功能接口实现 Java顺序表底层就是一个动态数组。其主要功能接口如下&#xff1a; // 1.打印顺序表&#xff0…

手势识别-手势音量控制(opencv)

本项目是使用了谷歌开源的框架mediapipe&#xff0c;里面有非常多的模型提供给我们使用&#xff0c;例如面部检测&#xff0c;身体检测&#xff0c;手部检测等。 代码需要用到opencv HandTraqckModule模块 mediapipe模块和一个音量控制模块 AndreMiras/pycaw: Python Core…