【深度学习注意力机制系列】—— CBAM注意力机制(附pytorch实现)

CBAM(Convolutional Block Attention Module)是一种用于增强卷积神经网络(CNN)性能的注意力机制模块。它由Sanghyun Woo等人在2018年的论文[1807.06521] CBAM: Convolutional Block Attention Module (arxiv.org)中提出。CBAM的主要目标是通过在CNN中引入通道注意力和空间注意力来提高模型的感知能力,从而在不增加网络复杂性的情况下改善性能。

1、概述

CBAM旨在克服传统卷积神经网络在处理不同尺度、形状和方向信息时的局限性。为此,CBAM引入了两种注意力机制:通道注意力和空间注意力。通道注意力有助于增强不同通道的特征表示,而空间注意力有助于提取空间中不同位置的关键信息。

2、模型结构

CBAM由两个关键部分组成:通道注意力模块(C-channel)空间注意力模块(S-channel)。这两个模块可以分别嵌入到CNN中的不同层,以增强特征表示。

2.1 通道注意力模块

在这里插入图片描述

通道注意力模块的目标是增强每个通道的特征表达。以下是实现通道注意力模块的步骤:

  1. 全局最大池化和全局平均池化: 对于输入特征图,首先对每个通道执行全局最大池化和全局平均池化操作,计算每个通道上的最大特征值和平均特征值。这会生成两个包含通道数的向量,分别表示每个通道的全局最大特征和平均特征。

  2. 全连接层: 将全局最大池化和平均池化后的特征向量输入到一个共享全连接层中。这个全连接层用于学习每个通道的注意力权重。通过学习,网络可以自适应地决定哪些通道对于当前任务更加重要。将全局最大特征向量和平均特征向相交,得到最终注意力权重向量。

  3. Sigmoid激活: 为了确保注意力权重位于0到1之间,应用Sigmoid激活函数来产生通道注意力权重。这些权重将应用于原始特征图的每个通道。

  4. 注意力加权: 使用得到的注意力权重,将它们与原始特征图的每个通道相乘,得到注意力加权后的通道特征图。这将强调对当前任务有帮助的通道,并抑制无关的通道。

代码实现

class ChannelAttention(nn.Module):"""CBAM混合注意力机制的通道注意力"""def __init__(self, in_channels, ratio=16):super(ChannelAttention, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.fc = nn.Sequential(# 全连接层# nn.Linear(in_planes, in_planes // ratio, bias=False),# nn.ReLU(),# nn.Linear(in_planes // ratio, in_planes, bias=False)# 利用1x1卷积代替全连接,避免输入必须尺度固定的问题,并减小计算量nn.Conv2d(in_channels, in_channels // ratio, 1, bias=False),nn.ReLU(inplace=True),nn.Conv2d(in_channels // ratio, in_channels, 1, bias=False))self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = self.fc(self.avg_pool(x))max_out = self.fc(self.max_pool(x))out = avg_out + max_outout = self.sigmoid(out)return out * x

2.2 空间注意力模块

在这里插入图片描述

空间注意力模块的目标是强调图像中不同位置的重要性。以下是实现空间注意力模块的步骤:

  1. 全局最大池化和全局平均池化: 对于输入特征图,分别执行全局最大池化和全局平均池化操作,生成不同上下文尺度的特征。
  2. 连接和卷积: 将全局最大池化和全局平均池化后的特征沿着通道维度进行连接(拼接),得到一个具有不同尺度上下文信息的特征图。然后,通过卷积层处理这个特征图,以生成空间注意力权重。
  3. Sigmoid激活: 类似于通道注意力模块,对生成的空间注意力权重应用Sigmoid激活函数,将权重限制在0到1之间。
  4. 注意力加权: 将得到的空间注意力权重应用于原始特征图,对每个空间位置的特征进行加权。这样可以突出重要的图像区域,并减少不重要的区域的影响。

代码实现

class SpatialAttention(nn.Module):"""CBAM混合注意力机制的空间注意力"""def __init__(self, kernel_size=7):super(SpatialAttention, self).__init__()assert kernel_size in (3, 7), 'kernel size must be 3 or 7'padding = 3 if kernel_size == 7 else 1self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)out = torch.cat([avg_out, max_out], dim=1)out = self.sigmoid(self.conv1(out))return out * x

2.3 混合注意力模块

在这里插入图片描述

CBAM就是将通道注意力模块和空间注意力模块的输出特征逐元素相乘,得到最终的注意力增强特征。这个增强的特征将用作后续网络层的输入,以在保留关键信息的同时,抑制噪声和无关信息。原文实验证明先进行通道维度的整合,再进行空间维度的整合,模型效果更好(有效玄学炼丹的感觉)。

代码实现

class CBAM(nn.Module):"""CBAM混合注意力机制"""def __init__(self, in_channels, ratio=16, kernel_size=3):super(CBAM_Block, self).__init__()self.channelattention = ChannelAttention(in_channels, ratio=ratio)self.spatialattention = SpatialAttention(kernel_size=kernel_size)def forward(self, x):x = self.channelattention(x)x = self.spatialattention(x)return x

总结

总之,CBAM模块通过自适应地学习通道和空间注意力权重,以提高卷积神经网络的特征表达能力。通过将通道注意力和空间注意力结合起来,CBAM模块能够在不同维度上捕获特征之间的相关性,从而提升图像识别任务的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/30727.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pyscenic分析:视频教程

我们之前更新过pyscenic的教程:pySCENIC单细胞转录因子分析更新:数据库、软件更新。我们也说过,我们号是放弃R语言版的SCENIC的分析了,因为它比较耗费计算资源和时间,所以我们的单细胞转录因子分析教程都是基于pysceni…

【Linux】gcc编译器的使用和介绍

目录 一,GCC简介 二,GCC的主要组件 三,GCC的工作流程 四,GCC的一些重要特性和功能 五,GCC常用的编译选项 六,GCC的输入输出选项的具体用法 七,GCC的参考文档 一,GCC简介 GCC&…

小研究 - MySQL 数据库下存储过程的综合运用研究

信息系统工程领域对数据安全的要求比较高,MySQL 数据库管理系统普遍应用于各种信息系统应用软件的开发之中,而角色与权限设计不仅关乎数据库中数据保密性的性能高低,也关系到用户使用数据库的最低要求。在对数据库的安全性进行设计时&#xf…

企业服务器器中了360后缀勒索病毒怎么解决,勒索病毒解密数据恢复

随着网络威胁的增加,企业服务器成为黑客攻击的目标之一。近期,上海某知名律师事务所的数据库遭到了360后缀的勒索病毒攻击,导致企业服务器内的数据库被360后缀勒索病毒加密。许多重要的数据被锁定无法正常读取,严重影响了企业的正…

adb 通过wifi连接手机

adb 通过wifi连接手机 1. 电脑通过USB线连接手机2. 手机开启USB调试模式,开启手机开发者模式3.手机开启USB调试模式 更多设置-》开发者选项-》USB调试4.点击Wi-Fi 高级设置,可以查看到手机Wi-Fi的IP地址,此IP地址adb命令后面的ip地址&#xf…

面试题:说说vue2的生命周期函数?说说vue3的生命周期函数?说说vue2和vue3的生命周期函数对比?

说说vue2的生命周期函数?说说vue3的生命周期函数?说说vue2和vue3的生命周期函数对比? 一、说说vue2的生命周期函数1.1 vue生命周期分为四个阶段、8个钩子1.1.1 beforeCreate 和 created 初始化阶段1.1.2 beforeMount 和 mounted 挂载阶段1.1.…

基于熵权法对Topsis模型的修正

由于层次分析法的最大缺点为:主观性太强,影响判断,对结果有很大影响,所以提出了熵权法修正。 变异程度方差/标准差。 如何度量信息量的大小: 把不可能的事情变成可能,这里面就有很多信息量。 概率越大&…

基于facenet+faiss开发构建人脸识别系统

facenet是一款非常经典的神经网络模型,它可以直接学习从人脸图像到欧几里德空间的映射(直接将人脸映射到欧几里得空间)。在欧几里德空间中,距离直接对应于人脸相似性的度量。一旦这个空间产生,使用标准技术,将FaceNet嵌入作为特征…

【Python机器学习】实验08 决策树

文章目录 决策树1 创建数据2 定义香农信息熵3 条件熵4 信息增益5 计算所有特征的信息增益,选择最优最大信息增益的特征返回6 利用ID3算法生成决策树7 利用数据构造一颗决策树Scikit-learn实例决策树分类决策树回归Scikit-learn 的决策树参数决策树调参 实验1 通过sk…

js2-js中的数据结构

1、什么是数据结构 数据结构是计算机存储、组织数据的方式。 数据结构意味着接口或封装,一个数据结构可被视为两个函数之间的接口,或者是由数据类型联合组成的存储内容的访问方法封装。 每天的编码中都会用到数据结构,其中数组是最简单的内存…

FFmpeg安装和使用

sudo apt install ffmpeg sudo apt-get install libavfilter-devcmakelist模板 CMakeLists.txt cmake_minimum_required(VERSION 3.16) project(ffmpeg_demo)# 设置ffmpeg依赖库及头文件所在目录,并存进指定变量 set(ffmpeg_libs_DIR /usr/lib/x86_64-linux-gnu) …

【GO】 33.go-zero 示例

1. 获取go-zero库 go get -u github.com/zeromicro/go-zero 2. 安装goctl brew install goctlgoctl -v #goctl version 1.5.4 darwin/amd64 3. 创建.api文件, greet.api goctl api -o greet.api syntax "v1"info (title: // TODO: add titledesc: //…

如何使用appuploader制作apple证书​

转载:如何使用appuploader制作apple证书​ 如何使用appuploader制作apple证书​ 一.证书管理​ 点击首页的证书管理 二.新建证书​ 点击“添加”,新建一个证书文件 免费账号制作证书只有7天有效期,没有推送消息功能,推送证书…

UNet Model

论文地址 第一阶段 conv2d(33) first conv:5725721 → 57057064 second conv:57057064 → 56856864 代码 # first 33 convolutional layer self.first nn.Conv2d(in_channels, out_channels, kernel_size3, padding1) self.act1 nn.ReLU() # Seco…

浏览器无法连接网络问题

问题描述 电脑其他程序都能正常联网,但是所有的浏览器都无法联网,同时外部网站都能ping通 问题诊断 查看电脑Internet连接的问题报告显示:该设备或资源(Web 代理)未设置为接受端口"7890"上的连接。 解决方案 经过检查发现不是IP地址…

若依vue -【 100 ~ 更 】

100 主子表代码生成详解 1 新建数据库表结构(主子表) -- ---------------------------- -- 客户表 -- ---------------------------- drop table if exists sys_customer; create table sys_customer (customer_id bigint(20) not null…

浅谈AI浪潮下的视频大数据发展趋势与应用

视频大数据的发展趋势是多样化和个性化的。随着科技的不断进步,人们对于视频内容的需求也在不断变化。从传统的电视节目到现在的短视频、直播、VR等多种形式,视频内容已经不再是单一的娱乐方式,更是涉及到教育、医疗、商业等各个领域。 为了满…

crypto-js中AES的加解密封装

在项目中安装依赖: npm i crypto-js在使用的页面引入: import CryptoJS from crypto-jscrypto-js中AES的加解密简单的封装了一下: //加密const KEY 000102030405060708090a0b0c0d0e0f // 秘钥 这两个需要和后端统一const IV 8a8c8fd8fe3…

API HOOK技术在MFC程序破解过程中的应用

更新,修改了一下typora的上传脚本,把图片全部上传到看雪上了 本文已于2023-08-02首发于个人博客 图片加载不出来,放了一个PDF版本在附件里 文中有几张图片是动图,如果不会动,可以去我的个人博客看 最近破解了一个M…

你不知道的阴影

我们在开发的时候,使用box-shadow添加阴影是这样的: .img {width: 500px;height: 500px;display: block;box-shadow: 0 0 15px #333333;} 但是我们想给这个图片加阴影应该怎么加那(让UI做,我真聪明!) &…