论文地址
第一阶段
conv2d(3×3)
first conv:572×572×1 → 570×570×64
second conv:570×570×64 → 568×568×64
代码
# first 3×3 convolutional layer
self.first = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.act1 = nn.ReLU()
# Second 3×3 convolutional layer
self.second = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
self.act2 = nn.ReLU()
第二阶段
maxpool2d
568×568×64 → 284×284×128
self.pool = nn.MaxPool2d(2)
conv2d
...
第五阶段
maxpool2d
64×64×512 → 32×32×1024
conv2d
→ 30×30×1024 → 28×28×1024
未完待补充