基于深度学习的高精度线路板瑕疵目标检测系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于深度学习的高精度线路板瑕疵目标检测系统可用于日常生活中来检测与定位线路板瑕疵目标,利用深度学习算法可实现图片、视频、摄像头等方式的线路板瑕疵目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括线训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本线路板瑕疵目标检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度线路板瑕疵目标检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载完整文件到自己电脑上,然后使用cmd打开到文件目录
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。
在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。

在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的线路板瑕疵目标数据集手动标注了missing_hole、mouse_bite、open_circuit、short、spur、spurious_copper这六个类别,数据集总计693张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的线路板瑕疵目标检测识别数据集包含训练集569张图片,验证集124张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的线路板瑕疵目标数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对线路板瑕疵目标数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/3054.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

物理机传输大文件到虚拟机

物理机快速传输大文件到虚拟机 测试使用Tabby传输大文件到虚拟机 1.1 准备大文件 1.2 通过Tabby上传文件到Linux 总耗时约:7分钟 1.3 通过EveryThing配置服务 打开EveryThing,点击工具—> 选项—>http服务器 启用HTTP服务器,配置…

Hyper-V安装Ubuntu-18.04

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、准备工作?二、下载指定的Ubuntu ISO镜像三、开始配置1.点击快速创建2.选择安装源 四、开始安装五、配置启动项总结 前言 最近有个很扯淡的问题…

如何快速入门C#编程?

学习C#需要持续努力和实践,但是在一周内入门是有可能的,前提是你愿意付出足够的时间和精力。以下是一周内入门C#的步骤和建议: 设定学习目标: 在一周内学习C#需要专注于基础知识。明确你的学习目标,例如了解语法、变量…

基于Java+SpringBoot+Vue+Uniapp前后端分离考试学习一体机设计与实现(视频讲解,已发布上线)

博主介绍:✌全网粉丝3W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验…

《面试1v1》Kafka基础

🍅 作者简介:王哥,CSDN2022博客总榜Top100🏆、博客专家💪 🍅 技术交流:定期更新Java硬核干货,不定期送书活动 🍅 王哥多年工作总结:Java学习路线总结&#xf…

React和Vue生命周期、渲染顺序

主要就是命名不同 目录 React 组件挂载 挂载前constructor() 挂载时render() 挂载后componentDidMount():初始化节点 更新 更新时render():prop/state改变 更新后componentDidUpdate() 卸载 卸载前componentWillUnmount():清理 V…

基于Redisson的Redis结合布隆过滤器使用

一、场景 缓存穿透问题 一般情况下,先查询Redis缓存,如果Redis中没有,再查询MySQL。当某一时刻访问redis的大量key都在redis中不存在时,所有查询都要访问数据库,造成数据库压力顿时上升,这就是缓存穿透。…

【已解决】ModuleNotFoundError: No module named ‘timm.models.layers.helpers‘

文章目录 错误信息原因解决方法专栏:神经网络精讲与实战AlexNetVGGNetGoogLeNetInception V2——V4ResNetDenseNet 错误信息 在使用timm库的时候出现了ModuleNotFoundError: No module named timm.models.layers.helpers’的错误,详情如下: …

CANoe如何配置Master/Slave模式

系列文章目录 文章目录 系列文章目录前言一、CANoe配置端口二、CANoe配置Master模式三、CANoe配置Slave模式前言 随着智能电动汽车的行业的发展,车载以太网的应用越来越广泛,最近很多朋友在问CANoe Master/Slave模式如何设置,车载以太网物理层也有一项是测试Master/Slave模式…

云曦暑期学习第一周——sql注入

1浅谈sql注入 1.1sql注入 sql注入是指web应用程序对用户输入数据的合法性没有判断,前端传入后端的参数是攻击者可控的,并且参数带入数据库查询,攻击者可以通过构造不同的sql语句来实现对数据库的任意操作 1.2原理 条件: 1.参…

C# 同构字符串

205 同构字符串 给定两个字符串 s 和 t ,判断它们是否是同构的。 如果 s 中的字符可以按某种映射关系替换得到 t ,那么这两个字符串是同构的。 每个出现的字符都应当映射到另一个字符,同时不改变字符的顺序。不同字符不能映射到同一个字符…

GO 语言GC

目录 写屏障 读屏障 GO语言GC准备 堆内存结构: GC内存分配: GC触发: P的作用: 写屏障 实现强弱三色不式,为了避免误删,则实现写屏障. 写屏障是在写操作中插入指令,目的是把数据对象的修改通知到GC GO语言支持两种写屏障 读屏障 非移动垃圾回收(例如 三色)天…

职责链模式:如何实现可灵活扩展算法的敏感信息过滤框架?

今天,我们主要讲解职责链模式的原理和实现。除此之外,我还会利用职责链模式,带你实现一个可以灵活扩展算法的敏感词过滤框架。下一节课,我们会更加贴近实战,通过剖析Servlet Filter、Spring Interceptor来看&#xff0…

对链表进行插入排序

给定单个链表的头 head ,使用 插入排序 对链表进行排序,并返回 排序后链表的头 。 插入排序 算法的步骤: 插入排序是迭代的,每次只移动一个元素,直到所有元素可以形成一个有序的输出列表。 每次迭代中,插入排序只从输…

9、PHP超级全局变量$_REQUEST 、$_POST、$_GET

1、PHP $_REQUEST 、$_POST用于收集HTML表单提交的数据。 以下代码演示了一个输入字段&#xff08;input&#xff09;及提交按钮(submit)的表单(form)。 当用户通过点击 "Submit" 按钮提交表单数据时, 表单数据将发送至<form>标签中 action 属性中指定的脚本文…

Word 常用操作总结

文章目录 【 1. 公式篇 】1.1 编号右居中自动编号1.2 多行公式对齐编号右靠下编号右居中 1.3 公式引用1.4 更新编号1.5 Mathtype公式编辑器自动编号右居中多行公式换行以及等号对齐更新编号 【 1. 公式篇 】 简述&#xff1a;通过“#换行”的方式使编号右对齐&#xff0c;通过…

01. Docker基础环境构建

目录 1、前言 2、关于Docker 2.1、几个术语 2.2、Docker容器化的价值 3、搭建基础环境 3.1、安装VMware 3.2、安装Doker 3.3、启动 3.4、验证Docker环境 4、小结 1、前言 在这里我们将学习关于Docker的一些技能知识&#xff0c;那么首先我们应该怼Docker有一个基础的…

centos7.6下安装mysql

1.下载yum源&#xff1a; wget https://dev.mysql.com/get/mysql80-community-release-el7-5.noarch.rpm2.执行安装&#xff1a; rpm -ivh mysql80-community-release-el7-5.noarch.rpm3.开始安装 yum install -y mysql-server4.启动mysql服务 systemctl start mysqld5.查看…

(Linux)查看端口占用并关闭进程

1、查看端口占用 netstat -anp |grep 端口号 → 列出所有端口-a或--all&#xff1a;显示所有连线中的Socket&#xff1b;-n: 显示数字地址-p: 显示程序的PID和名称 netstat -tunlp |grep 3306 → 端口号netstat -tunlp |grep mysql → 进程名称netstat -tunlp |grep 29520 →…

Scala学习(三)

2.8 浮点类型&#xff08;Float、Double&#xff09; Scala的浮点类型可以表示一个小数&#xff0c;比如123.4f&#xff0c;7.8&#xff0c;0.12等等。 1&#xff09;浮点型分类 数据类型 描述 Float [4] 32 位, IEEE 754标准的单精度浮点数 Double [8] 64 位 IEEE 754标准的双…