大数据可视化设计到底是啥,该怎么用

640?wx_fmt=gif

大数据可视化是个热门话题,在信息安全领域,也由于很多企业希望将大数据转化为信息可视化呈现的各种形式,以便获得更深的洞察力、更好的决策力以及更强的自动化处理能力,数据可视化已经成为网络安全技术的一个重要趋势。


文章目录

        一、什么是网络安全可视化

    • 1.1 故事+数据+设计 =可视化

    • 1.2 可视化设计流程

  • 二、案例一:大规模漏洞感知可视化设计

    • 2.1整体项目分析

    • 2.2分析数据

    • 2.3匹配图形

    • 2.4确定风格

    • 2.5优化图形

    • 2.6检查测试

  • 三、案例二:白环境虫图可视化设计

    • 3.1整体项目分析

    • 3.2分析数据

    • 3.3 匹配图形

    • 3.4优化图形

    • 3.5检查测试


一、什么是网络安全可视化

攻击从哪里开始?目的是哪里?哪些地方遭受的攻击最频繁……通过大数据网络安全可视化图,我们可以在几秒钟内回答这些问题,这就是可视化带给我们的效率 。 大数据网络安全的可视化不仅能让我们更容易地感知网络数据信息,快速识别风险,还能对事件进行分类,甚至对攻击趋势做出预测。可是,该怎么做呢?

1.1 故事+数据+设计 =可视化

做可视化之前,最好从一个问题开始,你为什么要做可视化,希望从中了解什么?是否在找周期性的模式?或者多个变量之间的联系?异常值?空间关系?比如政府机构,想了解全国各个行业漏洞的分布概况,以及哪个行业、哪个地区的漏洞数量最多;又如企业,想了解内部的访问情况,是否存在恶意行为,或者企业的资产情况怎么样。总之,要弄清楚你进行可视化设计的目的是什么,你想讲什么样的故事,以及你打算跟谁讲。

640?wx_fmt=png

有了故事,还需要找到数据,并且具有对数据进行处理的能力,图1是一个可视化参考模型,它反映的是一系列的数据的转换过程:

  • 我们有原始数据,通过对原始数据进行标准化、结构化的处理,把它们整理成数据表。

  • 将这些数值转换成视觉结构(包括形状、位置、尺寸、值、方向、色彩、纹理等),通过视觉的方式把它表现出来。例如将高中低的风险转换成红黄蓝等色彩,数值转换成大小。

  • 将视觉结构进行组合,把它转换成图形传递给用户,用户通过人机交互的方式进行反向转换,去更好地了解数据背后有什么问题和规律。

最后,我们还得选择一些好的可视化的方法。比如要了解关系,建议选择网状的图,或者通过距离,关系近的距离近,关系远的距离也远。

总之,有个好的故事,并且有大量的数据进行处理,加上一些设计的方法,就构成了可视化。

1.2 可视化设计流程

640?wx_fmt=png

一个好的流程可以让我们事半功倍,可视化的设计流程主要有分析数据、匹配图形、优化图形、检查测试。首先,在了解需求的基础上分析我们要展示哪些数据,包含元数据、数据维度、查看的视角等;其次,我们利用可视化工具,根据一些已固化的图表类型快速做出各种图表;然后优化细节;最后检查测试。

具体我们通过两个案例来进行分析。

二、案例一:大规模漏洞感知可视化设计

640?wx_fmt=jpeg

图2是全国范围内,各个行业漏洞的分布和趋势,橙黄蓝分别代表了漏洞数量的高中低。

2.1整体项目分析

我们在拿到项目策划时,既不要被大量的信息资料所迷惑而感到茫然失措,也不要急于完成项目,不经思考就盲目进行设计。首先,让我们认真了解客户需求,并对整体内容进行关键词的提炼。可视化的核心在于对内容的提炼,内容提炼得越精确,设计出来的图形结构就越紧凑,传达的效率就越高。反之,会导致图形结构臃肿散乱,关键信息无法高效地传达给读者。

对于大规模漏洞感知的可视化项目,客户的主要需求是查看全国范围内,各个行业的漏洞分布和趋势。我们可以概括为三个关键词:漏洞量、漏洞变化、漏洞级别,这三个关键词就是我们进行数据可视化设计的核心点,整体的图形结构将围绕这三个核心点来展开布局。

640?wx_fmt=png


2.2分析数据

想要清楚地展现数据,就要先了解所要绘制的数据,如元数据、维度、元数据间关系、数据规模等。根据需求,我们需要展现的元数据是漏洞事件,维度有地理位置、漏洞数量、时间、漏洞类别和级别,查看的视角主要是宏观和关联。涉及到的视觉元素有形状、色彩、尺寸、位置、方向,如图4。

2.3匹配图形

640?wx_fmt=png


2.4确定风格

640?wx_fmt=png


640?wx_fmt=png

匹配图形的同时,还要考虑展示的平台。由于客户是投放在大屏幕上查看,我们对大屏幕的特点进行了分析,比如面积巨大、深色背景、不可操作等。依据大屏幕的特点,我们对设计风格进行了头脑风暴:它是实时的,有紧张感;需要新颖的图标和动效,有科技感;信息层次是丰富的;展示的数据是权威的。

最后根据设计风格进一步确定了深蓝为标准色,代表科技与创新;橙红蓝分别代表漏洞数量的高中低,为辅助色;整体的视觉风格与目前主流的扁平化一致。

2.5优化图形

有了图形后,尝试把数据按属性绘制到各维度上,不断调整直到合理。虽然这里说的很简单,但这是最耗时耗力的阶段。维度过多时,在信息架构上广而浅或窄而深都是需要琢磨的,而后再加上交互导航,使图形更“可视”。

640?wx_fmt=png

在这个任务中,图形经过很多次修改,图7是我们设计的过程稿,深底,高亮的地图,多颜色的攻击动画特效,营造紧张感;地图中用红、黄、蓝来呈现高、中、低危的漏洞数量分布情况;心理学认为上方和左方易重视,“从上到下”“从左至右”的“Z”字型的视觉呈现,简洁清晰,重点突出。

完成初稿后,我们进一步优化了维度、动效和数量。维度:每个维度,只用一种表现,清晰易懂;动效:考虑时间和情感的把控,从原来的1.5ms改为3.5ms;数量:考虑了太密或太疏时用户的感受,对圆的半径做了统一大小的处理。

2.6检查测试

最后还需要检查测试,从头到尾过一遍是否满足需求;实地投放大屏幕后,用户是否方便阅读;动效能否达到预期,色差是否能接受;最后我们用一句话描述大屏,用户能否理解。

三、案例二:白环境虫图可视化设计

640?wx_fmt=jpeg

如果手上只有单纯的电子表格(左),要想找到其中IP、应用和端口的访问模式就会很花时间,而用虫图(右)呈现之后,虽然增加了很多数据,但读者的理解程度反而提高了。

3.1整体项目分析

当前,企业内部IT系统复杂多变,存在一些无法精细化控制的、非法恶意的行为,如何精准地处理安全管理问题呢?我们的主要目标是帮助用户监测访问内网核心服务器的异常流量,概括为2个关键词:内网资产和访问关系,整体的图形结构将围绕这两个核心点来展开布局。

3.2分析数据

接下来分析数据,案例中的元数据是事件,维度有时间、源IP、目的IP和应用,查看的视角主要是关联和微观。

640?wx_fmt=png

3.3 匹配图形

根据以往的经验,带有关系的数据一般使用和弦图和力导向布局图。最初我们采用的是和弦图,圆点内部是主机,用户要通过3个维度去寻找事件的关联。通过测试发现,用户很难理解,因此选择了力导向布局图(虫图)。第一层级展示全局关系,第二层级通过对IP或端口的钻取进一步展现相关性。

3.4优化图形

优化图形时,我们对很多细节进行了调整: – 考虑太密或太疏时用户的感受,只展示了TOP N。 – 弧度、配色的优化,与我们UI界面风格相一致。 – IP名称超长时省略处理。 – 微观视角中,源和目的分别以蓝色和紫色区分,同时在线上增加箭头,箭头向内为源,向外是目的,方便用户理解。 – 交互上,通过单击钻取到单个端口和IP的信息;鼠标滑过时相关信息高亮展示,这样既能让画面更加炫酷,又能让人方便地识别。

640?wx_fmt=png


640?wx_fmt=jpeg


3.5检查测试

通过调研,用户对企业内部的流向非常清楚,视觉导向清晰,钻取信息方便,色彩、动效等细节的优化帮助用户快速定位问题,提升了安全运维效率。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

四、总结

总之,借助大数据网络安全的可视化设计,人们能够更加智能地洞悉信息与网络安全的态势,更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。

可视化设计的过程中,我们还需要注意:1、整体考虑、顾全大局;2、细节的匹配、一致性;3、充满美感,对称和谐。

参考文献

【1】Nathan Yau,鲜活的数据:数据可视化指南,2014

【2】http://d3js.org/

【3】http://webpages.uncc.edu/krs/courses/6010/infovis/lectures/infovis.pdf

【4】http://xoxpirit.com/2010/11/10/data-visualization-guide/

【5】http://echarts.baidu.com/doc/example.html

【6】绿盟科技技术刊物,http://www.nsfocus.com.cn/About_NSFOCUS/publication.html


转自网站绿盟科技博客

网站链接:http://blog.nsfocus.net/

文章链接:http://blog.nsfocus.net/big-data-visualization/

版权归原作者所有,转载仅供学习使用,不用于任何商业用途,如有侵权请留言联系删除,感谢合作。


数据与算法之美

用数据解决不可能


640?wx_fmt=jpeg

长按扫码关注

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/302936.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WPF 如何实现颜色值拾取

WPF开发者QQ群: 340500857 前言如何进行颜色值拾取?这里采用的是调用WindowsAPI进行实现。吸取 沙漠尽头的狼 的建议多写一些文字进行描述。效果图如下:第一步 注册WindowsAPI 代码如下:[DllImport("user32.dll")]stati…

仿Google+相册的动画

在使用Google的时候,查看某一相册,会经常看到,如下图所示的动画效果。 鼠标移入、移出时均有动画效果,咋一看估计是使用了css3的transform属性来实现动画效果的。 在网上搜索“Google 相册 效果”的时候发现有人使用CSS3做了这样的…

看见到洞见之引子(二)机器学习算法

《看见到洞见》系列文章汇聚、分享的是绿盟科技创新中心对于数据分析在安全领域应用的技战术思考与经验,力求由浅入深层次递进,实战到方法论双线剖析。此文为系列文章之引子第二篇,深入浅出的对常用的数据分析和机器学习的算法进行介绍。在上…

一图看懂 ASP.NET Core 中的服务生命周期

翻译自 Waqas Anwar 2020年11月8日的文章 《ASP.NET Core Service Lifetimes (Infographic)》 [1]ASP.NET Core 支持依赖关系注入(DI)软件设计模式,该模式允许我们注册服务、控制如何实例化这些服务并将其注入到不同的组件中。一些服务可以在…

看见到洞见之引子(一)机器学习算法

《看见到洞见》系列文章汇聚、分享的是绿盟科技创新中心对于数据分析在安全领域应用的技战术思考与经验,力求由浅入深层次递进,实战到方法论双线剖析。此文为系列文章之引子第一篇,深入浅出的对常用的数据分析和机器学习的算法进行介绍。文章…

支持向量回归代码_RDKit:基于支持向量回归(SVR)预测logP

RDKit一个用于化学信息学的python库。使用支持向量回归(SVR)来预测logP。 分子的输入结构特征是摩根指纹,输出是logP。代码示例:#导入依赖库import numpy as npfrom rdkit import Chemfrom rdkit.Chem.Crippen import MolLogPfrom rdkit import Chem, Da…

移除 ZooKeeper 的 kafka 2.8 ,更快了

这段时间招聘季,后台收到不少关于 Kafka 的问题,确实 Kafka 近两年的行情,可谓是水涨船高了。根本原因是,是 Apache Kafka 作为一款开源的消息引擎系统。凭借高可靠、高吞吐、高可用、可伸缩等优越特性,在数据采集、传…

浅议SSH协议

什么是SSH? SSH 为 Secure Shell 的缩写,由 IETF 的网络工作小组(Network Working Group)所制定;SSH 为建立在应用层和传输层基础上的安全协议。SSH 是目前较可靠,专为远程登录会话和其他网络服务提供安全性…

机器学习 vs 深度学习到底有啥区别,为什么更多人选择机器学习

机器学习和深度学习有什么区别?让我们从本文中寻找答案。目标本文中,我们将深度学习与机器学习作比较。我们将逐一了解他们。我们还会讨论他们在各个方面的不同点。除了深度学习和机器学习的比较,我们还将研究它们未来的趋势。对比介绍深度学…

dreamweaver连接mysql数据库 发生一个不知名错误_用DREAMWEAVER连接数据库测试时总是弹出发生一个不知名的错误 你好! 请问一下这个问题你是怎么解的?...

展开全部2018年05月05日 19:11:13阅读数:1 编辑如图,PHPMySQLDreamweaverCS6连接MySQL就出现不知名错误,查遍全网也没有解决办法。32313133353236313431303231363533e58685e5aeb931333365653139笔者是机械学的专业,电脑是小白&…

ASP.Net 管道模型 VS Asp.Net Core 管道 总结

1 管道模型 1 Asp.Net Web Form管道请求进入Asp.Net工作进程后,由进程创建HttpWorkRequest对象,封装此次请求有关的所有信息,然后进入HttpRuntime类进行进一步处理。HttpRuntime通过请求信息创建HttpContext上下文对象,此对象将贯…

py2exe for python3_使用Py2Exe for Python3创建自己的exe程序

最近使用Python 3.5写了一个GUI小程序,于是想将该写好的程序发布成一个exe文件,供自己单独使用。至于通过安装的方式使用该程序,我没有探索,感兴趣的读者可以自己摸索。1 介绍我使用的开发环境是python3.4(实际上我是在另一个64位…

实际体验SpanT 的惊人表现

前言最近做了一个过滤代码块功能的接口。就是获取一些博客文章做文本处理,然后这些博客文章的代码块太多了,很多重复的代码关键词如果被拿过来处理,那么会对文本的特征表示已经特征选择会有很大的影响。所以需要将这些代码块的部分给过滤掉。…

AI人工智能资料分享来袭,还不快来!

小天从大学开始,便开启资料收集功能。近几年以AlphaGo为契机,人工智能进入新的发展阶段,再加上日常的深入研究,小天收集整理了丰富的AI学习资料,内容涵盖“深度学习资料包”,“数据挖掘资料包”&#xff0c…

聊一聊Jmeter的简单使用

背景 近段时间,团队想补强测试这一块,减少重复性的一些工作,让一些内容可以自动化起来,同时对开发同学写的接口的性能也开始有所要求了。考虑到团队内没有人有测试开发的经验,所以前期的选择还是以工具为主&#xff0c…

win7录制系统声音 加入立体声混音 camtasia recorder录屏

很多时候,我们录屏的时候都并不是非得通过麦克风来说话,比如,你想跟好友分享一首歌曲的时候,那么你总不能把麦拿到喇叭那儿录制噻,那样录出来的不仅很麻烦,而且歌曲质量很差!那么怎么录制系统正…

百万大奖参赛攻略 | 让程序员走向财富自由

还在担忧你的区块链项目曝光量小、品牌商业化进程慢、得不到投资人关注吗?这里有站上巨人肩膀的最全攻略!2018年金链盟中国区块链应用大赛,开始向全国企事业单位、科研机构、项目团队、开发者队伍征集应用案例啦!想参加的你们&…

Web通用令牌JwtBuilder

JSON Web Token (JWT)是一个开放标准(RFC 7519),它定义了一种紧凑的、自包含的方式,用于作为JSON对象在各方之间安全地传输信息。该信息可以被验证和信任,因为它是数字签名的。Nuget包:NewLife.Core、NewLife.Secrurity源码地址&a…

mysql---复杂的sql语句join的使用(left join,right join)

2019独角兽企业重金招聘Python工程师标准>>> SELECT u.*,count(u.id) AS sum FROM user AS uLEFT JOIN post AS pON p.user_id u.id RIGHT JOIN user_has_group as upON up.user_id u.id RIGHT JOIN user_has_email as ueON ue.user_id u.idWHERE u.username ! A…

你真的不了解这个地球

全世界有3.14 % 的人已经关注了数据与算法之美1. 首先来看看地球,看起来不错哟,地球~2. 图中圈圈里头的人口,比其他地区的所有总和都还要多。3. 以整个地球史来看,曾活过的人类高达1150亿人,其中包括现存的…