【图像去噪的扩散滤波】基于线性扩散滤波、边缘增强线性和非线性各向异性滤波的图像去噪研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 算例1

2.2 算例2

​2.3 算例3 

2.4 算例4 

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

本文包括:

各种基于扩散的图像滤波方法:
1.使用热方程的线性扩散滤波 - 使用隐式和显式欧拉方法求解。
2. 边缘增强线性各向异性扩散滤波。
3. 边缘增强非线性各向异性扩散滤波。

基于线性扩散滤波、边缘增强线性和非线性各向异性滤波的图像去噪研究是一个常见的信号处理领域的研究方向。下面将进一步介绍这些方法以及相关的研究内容:

1. 线性扩散滤波(Linear Diffusion Filtering):线性扩散滤波是一种基于偏微分方程的图像去噪方法。它通过在图像中应用一个扩散过程来减少噪声。在扩散过程中,噪声会逐渐模糊,而图像细节被保留。不同的线性扩散滤波方法可能使用不同的扩散方程,调整参数可以控制滤波效果。

2. 边缘增强线性扩散(Edge-Enhancing Linear Diffusion):这种方法是在线性扩散滤波的基础上进一步增强图像的边缘。它通过应用一个加权因子来保护图像边缘,从而避免过度模糊,同时去除噪声。通过增强边缘信息,图像的细节被更好地保留。

3. 非线性各向异性滤波(Nonlinear Anisotropic Filtering):非线性各向异性滤波是一种基于局部图像特征的去噪方法。它通过对图像进行局部方向和梯度分析,根据像素的梯度值来调整滤波过程。这种方法可以在保留边缘细节的同时,减少噪声。

相关的研究内容包括但不限于以下几个方面:

1. 算法改进:针对线性扩散滤波、边缘增强线性和非线性各向异性滤波等方法,研究者可以提出改进的算法,以进一步提高去噪效果和图像细节保留能力。这可能涉及到参数优化、滤波算子设计、区域自适应滤波策略等方面的研究。

2. 模型分析:研究者可以分析不同滤波方法在图像去噪中的原理和特点。比较线性扩散滤波、边缘增强线性和非线性各向异性滤波在去噪效果、计算效率、对图像细节保留的影响等方面的差异和优劣。

3. 参数优化:针对各种滤波方法,研究者可以进行参数优化,以获得最佳的去噪效果。这可能包括通过优化算法搜索最佳参数组合,或者根据图像特性和噪声特点进行自适应参数调整。

4. 实际应用:将这些去噪方法应用到实际图像处理中,如数字图像、医学影像等。研究者可以通过实验和评估来验证这些方法在不同场景和数据上的效果,并与其他图像去噪方法进行比较。

总的来说,基于线性扩散滤波、边缘增强线性和非线性各向异性滤波的图像去噪研究旨在提供有效的信号处理方法,以减少图像中的噪声,并尽可能保留重要的图像细节。

📚2 运行结果

2.1 算例1

2.2 算例2

2.3 算例3 

 

2.4 算例4 

 部分代码:

clear;

%read image
im = image_read('synimgn2');
[mm nn] = size(im);

w=im;
w = double(w);

%setting finite difference constants
alpha =0.5;
k = 1;
h = 1;

lambda = (alpha^2)*(k/(h^2));

[m n] = size(w);

% A matrix form Ax=B linear system
A = zeros(m,m);

% this gen_vec would be rotated and used to populate the matrix A
gen_vec = zeros(1,m);
gen_vec(1,1) = lambda;
gen_vec(1,2) = (1-2*lambda);
gen_vec(1,3) = lambda;

%filling in values of A matrix
for i=2:m
    A(i,:) = gen_vec;
    gen_vec = circshift(gen_vec,[1 1]);    
end
A(1,1) = (1-2*lambda);
A(1,2) = (lambda);

%making the top-right and bottom-left corners null
A(1:2,n-1:n) = 0;
A(m-1:m,1:2) = 0;

fprintf('size of w: %d\n',[size(w)]);
fprintf('size of w: %d\n',[size(A)]);
w_j_1 = w;
j=1;
figure
for i=1:200 %for each iteration
    %multiplication by A on both sides results in diffences in both x and y

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]李俊盛,刘宗田.基于异性扩散-中值滤波的超声医学图像去噪方法[J].计算机应用与软件, 2009, 26(1):3.DOI:10.3969/j.issn.1000-386X.2009.01.028.

[2]张瞳,朱虹,张然,等.复小波域维纳滤波与偏微分扩散相结合的图像去噪方法[J].中国图象图形学报A, 2009.

[3]王译禾.基于非线性扩散滤波结构信息的图像去噪方法研究[D].南京信息工程大学,2016.DOI:10.7666/d.Y3169747.

[4]莫绍强.基于各向异性扩散滤波的图像去噪研究[J].内蒙古师范大学学报:自然科学汉文版, 2017, 46(1):4.DOI:10.3969/j.issn.1001-8735.2017.01.006.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/30122.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux配置QT Creator环境:ubuntu中安装QT Creator环境

一、前景 目前市面上很多公司使用QT Creator进行界面开发,基本都会选择在Linux环境进行,优点不仅是市场所需,更是方便后期代码的移植,相较于Windows系统,Linux系统移植性非常好。故此篇文章,介绍如何在Linu…

基于Tars高并发IM系统的设计与实现-实战篇5

基于Tars高并发IM系统的设计与实现-实战篇5 群聊服务 GroupChatServer 群聊服务既可以接受来自BrokerServer的用户请求,也需要接收来自其他服务的RPC请求;所以本服务提供两套RPC接口:通用RPC接口和专用RPC接口。 通用RPC接口 通用RPC接口主要处理如下…

编写第一个 React Native 程序

React Native 目录 使用React Native CLI命令创建的目录如下图所示: 重要目录说明 目录说明__tests__存放测试用例的目录.bundle / config配置文件(一般不会用到)android 和 IOS 文件夹这两个文件夹主要是存放安卓和 ios 相关的配置文件和…

380. O(1) 时间插入、删除和获取随机元素 -------------Map类型在O(1)复杂度内实现插入删除

380. O(1 时间插入、删除和获取随机元素 原题链接:完成情况:解题思路:参考代码: 原题链接: 380. O(1) 时间插入、删除和获取随机元素 https://leetcode.cn/problems/insert-delete-getrandom-o1/description/ 完成…

【Spring】如果你需要使用重试机制,请使用Spring官方的Spring Retry

文章目录 前言Spring Retry的基本使用第一步,引入Spring Retry的jar包第二步,构建一个RetryTemplate类第三步,使用RETRY_TEMPLATE注意事项 拓展方法降级操作重试策略:时间策略重试策略:指定异常策略 前言 Spring Retr…

SpringBootWeb案例-准备工作

目录 前言 准备工作 需求&环境搭建 需求 环境搭建 开发规范 Restful开发规范 统一的响应结果 开发流程 前言 根据过往的文章可以知道目前我已经学习完了前端、后端、数据库的基础知识,接下来通过一个基于SpringBoot工程开发的web项目案例。 准备工作 …

视频监控汇聚EasyCVR平台WebRTC流地址无法播放的原因排查

开源EasyDarwin视频监控TSINGSEE青犀视频平台EasyCVR能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,在视频监控播放上,TSINGSEE青犀视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放,可同时播放多…

【Java并发】什么是AQS?

文章目录 什么是AQS?AQS与Synchronized的区别AQS-基本工作机制AQS是公平锁与非公平锁 什么是AQS? 全称是 AbstractQueuedSynchronizer,即抽象队列同步器。它是构建锁或者其他同步组件的基础框架 所谓抽象,其实目的就是把具体的逻辑交给子类去实现&…

【计算机视觉】关于图像处理的一些基本操作

目录 图像平滑滤波处理均值滤波计算过程python实现 高斯滤波计算过程python实现 中值滤波计算过程python实现 图像的边缘检测Robert算子计算过程python实现 图像处理腐蚀算子计算过程python实现 Hog(梯度方向直方图)特征计算流程:Hog的特征维…

什么是自定义表单和工作流?看完这篇文章就懂了

在很多中大型企业中,低代码技术平台的应用价值是较高的,也深得广大用户朋友的青睐和喜爱。其中的自定义表单和工作流是该平台的主要功能,可以解决当前工作效率低下、解放程序员时间和精力等各种现实问题,可以说是实现办公流程化、…

Pytorch量化之Post Train Static Quantization(训练后静态量化)

使用Pytorch训练出的模型权重为fp32,部署时,为了加快速度,一般会将模型量化至int8。与fp32相比,int8模型的大小为原来的1/4, 速度为2~4倍。 Pytorch支持三种量化方式: 动态量化(Dynamic Quantization&…

nvm安装以及使用

注意事项: 安装前需要卸载原有的node,卸载干净后cmd输入node -v查看; 一,下载nvm 下载:https://github.com/coreybutler/nvm-windows/releases 选择第四个 “nvm-setup.zip”; 二,安装 1&…

IAR目标代码4字节对齐

向工程添加文件 eof.c : // 文件头 #if defined(__CC_ARM) // MDK // uint32_t g_update_flag[2] __attribute__((zero_init, at(0x1000FFF0)));const unsigned long gc_eof __attribute__((used)) 0xFFFFFFFFul; #elif defined(__ICCARM__) // IAR__root const unsigned…

分布式 - 消息队列Kafka:Kafka生产者发送消息的分区策略

文章目录 1. PartitionInfo 分区源码2. Partitioner 分区器接口源码3. 自定义分区策略4. 轮询策略 RoundRobinPartitioner5. 黏性分区策略 UniformStickyPartitioner6. hash分区策略7. 默认分区策略 DefaultPartitioner 分区的作用就是提供负载均衡的能力,或者说对数…

ArcGIS Pro实践技术应用暨基础入门、制图、空间分析、影像分析、三维建模、空间统计分析与建模、python融合、案例应用

GIS是利用电子计算机及其外部设备,采集、存储、分析和描述整个或部分地球表面与空间信息系统。简单地讲,它是在一定的地域内,将地理空间信息和 一些与该地域地理信息相关的属性信息结合起来,达到对地理和属性信息的综合管理。GIS的…

数字化时代,如何做好用户体验与应用性能管理

引言 随着数字化时代的到来,各个行业的应用系统从传统私有化部署逐渐转向公有云、行业云、微服务,这种变迁给运维部门和应用部门均带来了较大的挑战。基于当前企业 IT 运维均为多部门负责,且使用多种运维工具,因此,当…

hacksudo3 通关详解

环境配置 一开始桥接错网卡了 搞了半天 改回来就行了 信息收集 漏洞发现 扫个目录 大概看了一眼没什么有用的信息 然后对着login.php跑了一下弱口令 sqlmap 都没跑出来 那么利用点应该不在这 考虑到之前有过dirsearch字典太小扫不到东西的经历 换个gobuster扫一下 先看看g…

Android界面设计与用户体验

Android界面设计与用户体验 1. 引言 在如今竞争激烈的移动应用市场,提供优秀的用户体验成为了应用开发的关键要素。无论应用功能多么强大,如果用户界面设计不合理,用户体验不佳,很可能会导致用户流失。因此,在Androi…

Flink源码之JobManager启动流程

从启动命令flink-daemon.sh中可以看出StandaloneSession入口类为org.apache.flink.runtime.entrypoint.StandaloneSessionClusterEntrypoint, 从该类的main方法会进入ClusterEntrypoint::runCluster中, 该方法中会创建出主要服务和组件。 StandaloneSessionClusterEntrypoint:…

博客项目(Spring Boot)

1.需求分析 注册功能(添加用户操纵)登录功能(查询操作)我的文章列表页(查询我的文章|文章修改|文章详情|文章删除)博客编辑页(添加文章操作)所有人博客列表(带分页功能)…