头上有多少根头发算秃头?

全世界只有3.14 % 的人关注了

爆炸吧知识

灵魂拷问

你秃头了吗?

超模君表妹秃不秃头一直都是模友关心的问题!

我想是时候讲讲秃头这个问题了!

阿里数据显示,在阿里零售平台买植发、护发东西的人中,80后占了38.5%,90后占了36.1%。这充分说明,在中国目前的脱发人群中,80、90后占了绝大多数,且90后脱发的凶猛程度隐隐有赶超80后的趋势。

超模君8岁的表妹肯定会青出于蓝,脱发会更凶猛。

为了解决表妹的困扰和广大模友的担忧,超模君本着科研的精神,对秃头问题进行深入研究,先解决头上有多少根头发算秃头的问题,再教大家计算自己的头发根数,以判断是否秃头。

秃头的过程

随着发际线不断后移,很多人都谈“秃”色变!秃头是一个世纪难题呀。其实每个人每天都在掉头发。

头上掉一根头发,很正常;再掉一根,也不用担心;还掉一根,仍旧不必忧虑……可天长地久,头发一根根掉下去,最后秃头就出现了。

一群蚂蚁选择了一棵百年老树的树底安营扎寨。为建设家园,蚂蚁们辛勤劳动,挪移一颗颗泥沙,又咬去一点点树皮……有一天,一阵微风吹来,百年老树轰然溃倒,乃至最终零落成泥。

以上这两种现象在哲学史可以理解为“从量变到质变”的结果。

一开始是无足轻重的变化,停留在量变的程度,难以引起人们的重视。当它达到某个程度的时候,才会引起外界的注意,但一旦“量变”呈等比级数出现时,灾难性镜头就不可避免地出现,树就倒了,人就秃了。

定义秃头的难点

从秃头到非秃头是一个渐变的过程,中间没有明确的分界线。因此,非要用头发根数在秃头和非秃头之间划一条分界线,给出一个非此即彼的定义,是不可行的。

头上有多少根头发算秃头?

我们是否可以对秃头下个定义?这还不简单,没有头发或者头发很少就是秃头呗!但“头发很少”是一个模糊的概念,到底多少算“很少”呢?

模糊的描述会导致对象的不确定,对于严谨的超模君来说是无法接受的。我们需要对“头发少到一定程度”给出明确的界限。

头发的多少是由头发的根数确定的,那就用头发根数来定义秃头,比如规定:头发少于100根是秃头。这样定义秃头就很明确了。

然而这样的定义会引发争议,你说100根头发算秃头,那101根头发就不算秃头了吗?这显然与我们的常识相违背,虽然定义是明确的,但是在大家看来是不合理的。

因为在我们看来,多/少一根头发根本无法影响一个人是否秃头,如果你是秃头,少一根或者多一根,依然会认为你是秃头。

这么说来,如果定义n根头发是秃头,那么n+1根头发也是秃头。由我们高中学的数学归纳法,会得出每个人都是秃子,包括超模君,这不是一个荒谬的结论吗?

事实上,秃头这个概念本身是一个模糊的概念,如果把秃头的人看作一个集合的话,这个集合的外延是不清晰的,用传统的精准数学是无法进行定义的。要给秃头下一个明确的定义似乎是一件难以完成的事。

秃头定义难点解决

有问题总得解决,历史上难题都会被解决,只是时间问题。

1965年,美国控制论专家、数学家扎德发表了论文《模糊集合》,模糊数学这门学科正式诞生。模糊数学的诞生,才让头上有多少根头发算秃头的问题得以更合理的定义。

在此之前我们研究的数学都是精准的,比如说集合的概念,一个元素要么属于一个集合要么不属于,经典的数学中只有属于和不属于的概念。

而模糊数学,引入了一个量——隶属度,它对应于[0,1]中的一个数。

回到秃头的问题,假设人的头发少于100根为标准的秃头,那么将头发少于100根的隶属度设为1,如果有101根头发,可设其隶属度为0.999999或更大,102根头发的隶属度为0.999998;多于10万根头发的隶属度为0。

隶属度越接近1,越倾向于认为是秃头;越接近于0,则越倾向于认为非秃头;如果在0.5附近,则就是半秃了。

好了,现在头上有多少根头发算秃头的问题算是解决了,要想判断自己是否秃头,那得知道自己有多少根头发呀。

灵魂拷问,你是否秃头?

如何去计算自己的头发有多少根呢?超模君也准备了好几个方法给大家参考。

方法一:称!

第一步:把头发均匀剪成1cm的寸头;

第二步:把头发剃光,记1cm全部头发重量为M;

第三步:从全部头发数出100根重量记为m;

则头发的数量为:M/m*100即为头发数量。该方法最大缺点是要剃光头!

超模君想捉表妹开始试验,表妹死活不肯!

方法二:数!

第一步:先数2000根,把头发扎起来;

第二步:再数两千根,再扎起来......,直到数完

第三步:头发的根数为:2000*扎数+最后一扎根数(不足2000)。

数的话要花比较长时间,除非你秃头哈哈哈,一般正常有10万的发量,假设一秒数2根,要花834分钟,也就是13.9个小时不间断地数!

鉴于表妹的头发不够长,在超模君的威逼利诱下,小天成为了小白鼠,最终发量为96523根!

结合模糊数学判断,隶属度为0.000008吧,小天不秃!

方法三:算!

第一步:选取样本:截取1平方厘米,数出有多少根,多取几次样本,算平均值 ;

第二步:测出头皮表面积 ;

第三步:平均值乘总面积,就是头发总数。

此方法难点在如何取样和测出头皮表面积。

取样可参考:蘸墨取样法

来自知乎某网友

计算头皮表面积可参考下面的方案。

方案A 终极舔狗法

(1)准备一只狗;

(2)训练它舔头,达到均匀舔遍头皮不重复水平后,开始试验;

(3)测量狗的体重损失ΔT;

(4)再测量狗舔单位面积(比如1dm²)的体重损失Δt;

(5)头皮表面积为ΔT/Δtdm²;

以上操作最好在通风橱里面进行,可尽量减少狗瓜子排汗导致的误差,但禽类排汗量少,误差可忽略不计。

方案B  练习烧烤法

(1)头皮的表面积约为S=V/d;

(2)取适量豆瓣酱、辣椒粉、生抽、食醋、白糖,配成烧烤汁,测出烧烤汁的体积为V;

(3)取一把小刷子,在头的表面练习烧烤刷汁,直到非常均匀地刷上一层薄薄的烧烤汁后,测出酱汁层的厚度为d;

超模君利用上述某一方法,测得表妹的头皮表面积约为582.71cm²,取样平均值为161.3根/cm²,发量约为:93991.123,隶属度大概为0.000004吧,结果为不秃!

表妹的抗秃能力果然很强,看来从小让8岁表妹学习高深的数学,培养科研的精神还是有用的!

实验过后, 秃头小天开始追打超模君

写篇文章,我容易吗我!!!

所以你秃了吗?

本文系网易新闻·网易号“各有态度”特色内容

部分资料来源于网络

转载请在公众号中,回复“转载”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/295068.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VS Code集成SandDance可视化分析数据

什么是SandDanceSandDance是微软研究院推出的数据可视化工具。SandDance通过触控式的界面,实现使用者和3D信息图表进行互动,更加特别的是可以以不同的角度不同的方式呈现分析结果,使用户可以通过可视化的方式更加直观的接受数据信息。基于易于…

android textview 中超出屏幕宽度的字符 省略号显示

2019独角兽企业重金招聘Python工程师标准>>> 当利用textview显示内容时&#xff0c;显示内容过多可能会折行或显示不全&#xff0c;那样效果很不好。今天发现android api中已经给出自动省略的功能。 实现如下&#xff1a; <TextView android:layout_width"f…

世界各国的教育差距有多大?这几部全世界都在热议的教育纪录片,揭开一切.........

全世界只有3.14 % 的人关注了爆炸吧知识BBC纪录片《人生七年》里讲到&#xff1a;人无法确定能留给下一代什么财物&#xff0c;但至少可以确定&#xff0c;一旦给了他们好的教育&#xff0c;他们终生都可以受用。但是这世界上从来没有一个学校去教我们要如何为人父母&#xff0…

助力 .NET MAUI Community Toolkit

微软中国MSDN 点击上方蓝字关注我们最近&#xff0c;我们推出了.NET MAUI Community Toolkit&#xff0c;并且现在已做好了接受社区贡献的准备。我们修改了添加新功能的工作流程&#xff0c;在此分享给各位&#xff0c;以方便大家今后继续完善&#xff0c;做出贡献。我们还为此…

Oracle错误:ORA-27121: unable to determine size of shared memory segment

为什么80%的码农都做不了架构师&#xff1f;>>> 今天在用SQLPLUS登陆数据库时&#xff0c;忽然报了一个错误&#xff0c;错误的代码如下&#xff1a; ORA-01034: ORACLE not availableORA-27121: unable to determine size of shared memory segmentLinux Error: 1…

Html中value和name属性的作用

1.按钮中用的value 指的是按钮上要显示的文本 比如“确定”“删除”等 2.复选框用的value 指的是这个复选框的值 3.单选框用的value 和复选框一样 4.下拉菜单用的value 是列表中每个子项的值 5.隐藏域用的value 是框里面显示的内容 在后台如果你想得到复选框的内容 就是value …

.NET 开源免费图表组件库,Winform,WPF 通用

大家好, 我是等天黑, 今天给大家介绍一个功能完善, 性能强悍的图表组件库 ScottPlot, 当我第一次在 github 上看到这个库, 我看不懂&#xff0c;但我大受震撼, 这么好的项目当然要分享出来了。https://github.com/ScottPlot/ScottPlotScottPlot 是一个 .NET 图表组件, 主要有以…

物理学上最厉害的54个男人!2400年来难以超越,没想到聚在一起后这么震撼......

全世界只有3.14 % 的人关注了爆炸吧知识19世纪的最后一天电子的发现者汤姆生发表了新年祝词&#xff1a;“晴朗的天空远处&#xff0c;有两朵令人不安的乌云令物理学的优美性和明晰性黯然失色”也似乎就是从这一天开始经典力学的地位被撼动了原子的大门打开了这场微观世界的探险…

[MySQL]关于amd.dll后门病毒入侵3306端口的临时解决方案

为什么80%的码农都做不了架构师&#xff1f;>>> amd.dll入侵事宜&#xff1a; 由于MySQL 5.1.30以上版本的一个漏洞&#xff08;当然是不是因为漏洞的原因&#xff0c;目前暂未知&#xff09;&#xff0c;导致一个后门程序会通过3306端口的MySQL服务获取到Windows…

Spring Security3源码分析-http标签解析(转)

为什么80%的码农都做不了架构师&#xff1f;>>> 在FilterChainProxy初始化的过程中&#xff0c;大概描述了标签解析的一些步骤&#xff0c;但不够详细 <http auto-config"true"> <remember-me key"workweb" token-validity-se…

Android之React Native 中组件的生命周期

React Native 中组件的生命周期 概述 就像 Android 开发中的 View 一样&#xff0c;React Native&#xff08;RN&#xff09; 中的组件也有生命周期&#xff08;Lifecycle&#xff09;。所谓生命周期&#xff0c;就是一个对象从开始生成到最后消亡所经历的状态&#xff0c;理解…

当女朋友学会「监视」男朋友......

1 日本网友拍到两只水母互殴&#xff01;▼2 打印机也会生气&#xff1f;&#xff08;素材来源网络&#xff0c;侵删&#xff09;▼3 现在你们可以互换卡槽了~&#xff08;素材来源网络&#xff0c;侵删&#xff09;▼4 有什么适合整蛊朋友的恶作剧▼5 哈哈哈哈哈&#xff…

使用.NET5、Blazor和Electron.NET构建跨平台桌面应用

Electron.NET是一个嵌入了ASP.NET Core的Electron的封装&#xff0c;通过Electron.NET可以构建基于.NET5的跨平台的桌面应用&#xff0c;使得开发人员只需要使用ASP.NET Core和 Blazor就可以胜任桌面应用的开发工作。开发环境操作系统Windows/macOS/Linux.NET5.0npm创建新项目创…

linux内核分析作业3:跟踪分析Linux内核的启动过程

内核源码目录 1、 arch:录下x86重点关注 2、 init&#xff1a;目录下main.c中的start_kernel是启动内核的起点 3、 ipc&#xff1a;进程间通信的目录 实验 使用实验楼的虚拟机打开shell cd LinuxKernel/ qemu -kernel linux-3.18.6/arch/x86/boot/bzImage -initrd rootfs.img 使…

linux安装定制添加输入,Arch Linux--定制自己的Linux操作系統(乙-國際化桌面安裝篇)...

Arch Linux&#xff0d;&#xff0d;定制自己的Linux操作系統&#xff0d;&#xff0d;&#xff0d;&#xff0d;乙&#xff0d;國際化&桌面安裝篇相信大家看了《甲-安裝篇》之後&#xff0c;Arch Linux系統已經可以正常運行了吧&#xff1f;不過&#xff0c;Arch Linux默認…

这几部经典纪录片,竟然还有人没看过?

全世界只有3.14 % 的人关注了爆炸吧知识看纪录片&#xff0c;既可以追溯上下数千年的历史文化&#xff0c;也可以欣赏从宇宙到地心深处的奇妙境界&#xff0c;而及其超级精彩的画面即使定格&#xff0c;也是一幅摄影佳作。纪录片题材广泛、制作精良&#xff0c;观看起来算的上是…

github 上微信判断是否被删除的源码 以及使用解惑

为什么80%的码农都做不了架构师&#xff1f;>>> 从Github上的https://github.com/0x5e/wechat-deleted-friends&#xff0d;&#xff0d;clone出来的代码 今天在我的机器上不能运行了&#xff0c;环境为Mac 10.10 python2.7.10中 提示错误&#xff0c; Traceback (…

坑爹!千万不要在生产环境使用控制台日志

前言某控制台应用程序会随机卡死&#xff0c;一直找不到原因。无意中在控制台敲了下回车&#xff0c;发现程序居然恢复正常了。最后在stackoverflow上找到了这个帖子&#xff1a;How and why does QuickEdit mode in Command Prompt freeze applications?[1]原来是“快速编辑模…

这五部关于海洋的纪录片,每一帧都犹如壁纸!

全世界只有3.14 % 的人关注了爆炸吧知识虽说读万卷书不如行万里路&#xff0c;但现在足不出户也能让你见识到世界各地的奇特风景。今天小编要推荐几部关于海洋的纪录片&#xff0c;这些纪录片从不同方面揭示了深海下面的奥秘&#xff0c;带你领略不一样的神秘景色。&#xff08…

UML类图几种关系的总结

在UML类图中&#xff0c;常见的有以下几种关系:泛化&#xff08;Generalization&#xff09;, 实现&#xff08;Realization&#xff09;,关联&#xff08;Association&#xff09;,聚合&#xff08;Aggregation&#xff09;,组合(Composition)&#xff0c;依赖(Dependency) 1…