图片若未能正常显示,点击下面链接:
http://ihoge.cn/2018/Logistic-regression.html
在线性回归中,我们想要建立一个模型,来拟合一个因变量 y 与一个或多个独立自变量(预测变量) x 之间的关系。
给定:
数据集
xixi是d-维向量Xi=(x(i)1,...,x(i)d)Xi=(x1(i),...,xd(i))
y(i)y(i)是一个目标变量,它是一个标量
线性回归模型可以理解为一个非常简单的神经网络:
它有一个实值加权向量w=(w(i),...,w(d))w=(w(i),...,w(d))
它有一个实值偏置量 b
它使用恒等函数作为其激活函数
线性回归模型可以使用以下方法进行训练
a) 梯度下降法
b) 正态方程(封闭形式解): w=(XTX)−1XTyw=(XTX)−1XTy
其中 X 是一个矩阵,其形式为(m,nfeatures)(m,nfeatures),包含所有训练样本的维度信息。
而正态方程需要计算(XTX)(XTX)的转置。这个操作的计算复杂度介于O(n2.4features)O(nfeatures2.4)和O(n3features)O(nfeatures3)之间,而这取决于所选择的实现方法。因此,如果训练集中数据的特征数量很大,那么使用正态方程训练的过程将变得非常缓慢。
线性回归模型的训练过程有不同的步骤。首先(在步骤 0 中),模型的参数将被初始化。在达到指定训练次数或参数收敛前,重复以下其他步骤。
第 0 步:
用0 (或小的随机值)来初始化权重向量和偏置量,或者直接使用正态方程计算模型参数
第 1 步(只有在使用梯度下降法训练时需要):
计算输入的特征与权重值的线性组合,这可以通过矢量化和矢量传播来对所有训练样本进行处理:
y˙=X⋅w+by˙=X⋅w+b
其中 X 是所有训练样本的维度矩阵,其形式为(m,nfeatures)(m,nfeatures);这里我用· 表示∧∧ 。
第 2 步(只有在使用梯度下降法训练时需要):
用均方误差计算训练集上的损失:J(w,b)=1m∑mi=1(y˙(i)−y(i))2J(w,b)=1m∑i=1m(y˙(i)−y(i))2
第 3 步(只有在使用梯度下降法训练时需要):
对每个参数,计算其对损失函数的偏导数:
∂J∂wj=2m∑mi=1(y˙(i)−y(i))x(i)j∂J∂wj=2m∑i=1m(y˙(i)−y(i))xj(i)
∂J∂b=2m∑mi=1(y˙(i)−y(i))∂J∂b=2m∑i=1m(y˙(i)−y(i))
所有偏导数的梯度计算如下:
ΔwJ=2mXT(y˙−y)ΔwJ=2mXT(y˙−y)
ΔbJ=2m(y˙−y)ΔbJ=2m(y˙−y)
第 4 步(只有在使用梯度下降法训练时需要):
更新权重向量和偏置量:
w=w−ηΔwJw=w−ηΔwJ
ΔbJ=2m(y˙−y)ΔbJ=2m(y˙−y)
其中η表示学习率
代码实现
数据集
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
np.random.seed(123)X = 2 * np.random.rand(500, 1)
y = 5 + 3 * X + np.random.randn(500, 1)
fig = plt.figure(figsize=(8,6))
plt.scatter(X, y)
plt.title("Dataset")
plt.xlabel("First feature")
plt.ylabel("Second feature")
plt.show()
X_train, X_test, y_train, y_test = train_test_split(X, y)
print(f'Shape X_train: {X_train.shape}')
print(f'Shape y_train: {y_train.shape}')
print(f'Shape X_test: {X_test.shape}')
print(f'Shape y_test: {y_test.shape}')
Shape X_train: (375, 1)
Shape y_train: (375, 1)
Shape X_test: (125, 1)
Shape y_test: (125, 1)
线性回归分类 源码编译
class LinearRegression:def __init__(self):passdef train_gradient_descent(self, X, y, learning_rate=0.01, n_iters=100):"""Trains a linear regression model using gradient descent"""# Step 0: Initialize the parametersn_samples, n_features = X.shapeself.weights = np.zeros(shape=(n_features,1))self.bias = 0costs = []for i in range(n_iters):# Step 1: Compute a linear combination of the input features and weightsy_predict = np.dot(X, self.weights) + self.bias# Step 2: Compute cost over training setcost = (1 / n_samples) * np.sum((y_predict - y)**2)costs.append(cost)if i % 100 == 0:print(f"Cost at iteration {i}: {cost}")# Step 3: Compute the gradientsdJ_dw = (2 / n_samples) * np.dot(X.T, (y_predict - y))dJ_db = (2 / n_samples) * np.sum((y_predict - y)) # Step 4: Update the parametersself.weights = self.weights - learning_rate * dJ_dwself.bias = self.bias - learning_rate * dJ_dbreturn self.weights, self.bias, costsdef train_normal_equation(self, X, y):"""Trains a linear regression model using the normal equation"""self.weights = np.dot(np.dot(np.linalg.inv(np.dot(X.T, X)), X.T), y)self.bias = 0return self.weights, self.biasdef predict(self, X):return np.dot(X, self.weights) + self.bias
使用梯度下降进行训练
regressor = LinearRegression()
w_trained, b_trained, costs = regressor.train_gradient_descent(X_train, y_train, learning_rate=0.005, n_iters=600)
fig = plt.figure(figsize=(8,6))
plt.plot(np.arange(600), costs)
plt.title("Development of cost during training")
plt.xlabel("Number of iterations")
plt.ylabel("Cost")
plt.show()
Cost at iteration 0: 66.45256981003433
Cost at iteration 100: 2.208434614609594
Cost at iteration 200: 1.2797812854182806
Cost at iteration 300: 1.2042189195356685
Cost at iteration 400: 1.1564867816573
Cost at iteration 500: 1.121391041394467Text(0,0.5,'Cost')
测试(梯度下降模型)
n_samples, _ = X_train.shape
n_samples_test, _ = X_test.shapey_p_train = regressor.predict(X_train)
y_p_test = regressor.predict(X_test)error_train = (1 / n_samples) * np.sum((y_p_train - y_train) ** 2)
error_test = (1 / n_samples_test) * np.sum((y_p_test - y_test) ** 2)print(f"Error on training set: {np.round(error_train, 4)}")
print(f"Error on test set: {np.round(error_test)}")
Error on training set: 1.0955
Error on test set: 1.0
使用正规方程(normal equation)训练
X_b_train = np.c_[np.ones((n_samples)), X_train]
X_b_test = np.c_[np.ones((n_samples_test)), X_test]reg_normal = LinearRegression()
w_trained = reg_normal.train_normal_equation(X_b_train, y_train)
测试(正规方程模型)
y_p_train = reg_normal.predict(X_b_train)
y_p_test = reg_normal.predict(X_b_test)error_train = (1 / n_samples) * np.sum((y_p_train - y_train) ** 2)
error_test = (1 / n_samples_test) * np.sum((y_p_test - y_test) ** 2)print(f"Error on training set: {np.round(error_train, 4)}")
print(f"Error on test set: {np.round(error_test, 4)}")
Error on training set: 1.0228
Error on test set: 1.0432
可视化测试预测
fig = plt.figure(figsize=(8,6))
plt.scatter(X_train, y_train)
plt.scatter(X_test, y_p_test)
plt.xlabel("First feature")
plt.ylabel("Second feature")
plt.show()
Text(0,0.5,'Second feature')
转载注明出处:
http://ihoge.cn/2018/Logistic-regression.html