机器学习笔记之优化算法(十)梯度下降法铺垫:总体介绍

机器学习笔记之优化算法——梯度下降法铺垫:总体介绍

引言

从本节开始,将介绍梯度下降法 ( Gradient Descent,GD ) (\text{Gradient Descent,GD}) (Gradient Descent,GD)

回顾:线搜索方法

线搜索方法作为一种常见优化问题的策略,该方法的特点是:其迭代过程中,将数值解的方向和步长分开执行。对应数学符号表达如下:

  • 其中 P k \mathcal P_k Pk是一个向量,描述更新方向; α k \alpha_k αk是一个 > 0 >0 >0的实数,表示步长。
  • 由于我们更关注向量 P k \mathcal P_k Pk的方向性,因而通常将其表示为单位向量,即 ∣ ∣ P k ∣ ∣ = 1 ||\mathcal P_k|| = 1 ∣∣Pk∣∣=1
    x k + 1 = x k + α k ⋅ P k x_{k+1} = x_k + \alpha_k \cdot \mathcal P_k xk+1=xk+αkPk

线搜索方法的方向 P k \mathcal P_k Pk

在线搜索方法——方向角度中介绍过:关于目标函数 f ( ⋅ ) f(\cdot) f()终极目标 min ⁡ X ∈ R n f ( X ) \mathop{\min}\limits_{\mathcal X \in \mathbb R^n} f(\mathcal X) XRnminf(X),如果数值解序列 { x k } k = 0 ∞ \{x_k\}_{k=0}^{\infty} {xk}k=0对应的目标函数结果 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0服从严格的单调性
f ( x k + 1 ) < f ( x k ) f(x_{k+1}) < f(x_k) f(xk+1)<f(xk)
那么必然有:

  • 其中 [ ∇ f ( x k ) ] [\nabla f(x_k)] [f(xk)]表示数值解 x k x_k xk对应目标函数的梯度向量,详细推导过程见上方链接。
  • P k \mathcal P_k Pk化为单位向量产生的常数系数合并到 α k \alpha_k αk中。
    f ( x k + 1 ) − f ( x k ) ≈ [ ∇ f ( x k ) ] T P k ⋅ α k < 0 f(x_{k+1}) - f(x_k) \approx [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha_k < 0 f(xk+1)f(xk)[f(xk)]TPkαk<0

从而将满足该条件的 P k \mathcal P_k Pk称作下降方向 ( Descent Direction ) (\text{Descent Direction}) (Descent Direction)。将上式展开有:

  • 其中 θ k \theta_k θk表示向量 ∇ f ( x k ) \nabla f(x_k) f(xk)与向量 P k \mathcal P_k Pk之间的夹角。
  • 在仅考虑方向角度对 f ( x k + 1 ) − f ( x k ) f(x_{k+1}) - f(x_k) f(xk+1)f(xk)影响的情况下,将 α k \alpha_k αk忽略,不改变不等号方向。
    ∣ ∣ ∇ f ( x k ) ∣ ∣ ⋅ ∣ ∣ P k ∣ ∣ ⋅ cos ⁡ θ k < 0 ||\nabla f(x_k)|| \cdot ||\mathcal P_k|| \cdot \cos \theta_k <0 ∣∣∇f(xk)∣∣∣∣Pk∣∣cosθk<0

其中 ∣ ∣ ∇ f ( x k ) ∣ ∣ , ∣ ∣ P k ∣ ∣ ||\nabla f(x_k)||,||\mathcal P_k|| ∣∣∇f(xk)∣∣,∣∣Pk∣∣均表示向量的(均为固定的正值),因而 cos ⁡ θ k ∈ [ − 1 , 0 ) \cos \theta_k \in [-1,0) cosθk[1,0)。当 cos ⁡ θ k = − 1 \cos \theta_k = -1 cosθk=1时, f ( x k + 1 ) − f ( x k ) f(x_{k+1}) - f(x_k) f(xk+1)f(xk)可取得最小值,从而达到最佳的优化方向。而此时下降方向 P k \mathcal P_k Pk与梯度方向 ∇ f ( x k ) \nabla f(x_k) f(xk)方向相反。因此也称此时的 P k \mathcal P_k Pk最速下降方向
其中 ∣ ∣ ∇ f ( x k ) ∣ ∣ ||\nabla f(x_k)|| ∣∣∇f(xk)∣∣是关于上一次迭代结果 x k x_k xk的函数,因而是已知信息。
P k = − ∇ f ( x k ) \mathcal P_k = -\nabla f(x_k) Pk=f(xk)

线搜索方法的步长 α k \alpha_k αk

关于当前迭代步骤的最优步长 α k \alpha_k αk通常有两种求解方式:

  • 精确搜索:在 P k \mathcal P_k Pk固定的情况下,选择使得 f ( x k + 1 ) f(x_{k+1}) f(xk+1)达到最小的步长结果作为当前迭代步骤的最优步长
    其中 x k , P k x_k,\mathcal P_k xk,Pk是确定的信息,因此可将 f ( x k + 1 ) f(x_{k+1}) f(xk+1)视作关于 α \alpha α的函数 ϕ ( α ) \phi(\alpha) ϕ(α)
    α k = arg ⁡ min ⁡ α > 0 f ( x k + 1 ) = arg ⁡ min ⁡ α > 0 f ( x k + α ⋅ P k ) = arg ⁡ min ⁡ α > 0 ϕ ( α ) \begin{aligned}\alpha_k & = \mathop{\arg\min}\limits_{\alpha > 0} f(x_{k+1}) \\ & = \mathop{\arg\min}\limits_{\alpha > 0} f(x_k + \alpha \cdot \mathcal P_k) \\ & = \mathop{\arg\min}\limits_{\alpha > 0} \phi(\alpha) \end{aligned} αk=α>0argminf(xk+1)=α>0argminf(xk+αPk)=α>0argminϕ(α)
    具体求解方式就是: α \alpha α求导,从而获取极值。但真实情况下,这种方式并不可取
    • 关于目标函数 f ( ⋅ ) f(\cdot) f()的复杂程度我们一无所知。关于梯度 ∇ f ( x k + α ⋅ P k ) \nabla f(x_k + \alpha \cdot \mathcal P_k) f(xk+αPk)可能非常复杂。
    • 这仅仅是一次迭代步骤的解。也就是说:每次迭代都要求解精确解。这无疑增加了迭代的计算代价,我们仅希望迭代产生的步长能够收敛到 lim ⁡ k ⇒ ∞ f ( x k ) ⇒ f ∗ \mathop{\lim}\limits_{k \Rightarrow \infty}f(x_{k}) \Rightarrow f^* klimf(xk)f,它的中间过程是否准确并不在乎。
      { ∂ ϕ ( α ) ∂ α = ϕ ′ ( α ) = [ ∇ f ( x k + α ⋅ P k ) ] T P k ϕ ′ ( α ) = 0 ⇒ α k \begin{cases}\begin{aligned} & \frac{\partial \phi(\alpha)}{\partial \alpha} = \phi'(\alpha)= [\nabla f(x_k + \alpha \cdot \mathcal P_k)]^T \mathcal P_k \\ & \phi'(\alpha) = 0 \Rightarrow \alpha_k \end{aligned}\end{cases} αϕ(α)=ϕ(α)=[f(xk+αPk)]TPkϕ(α)=0αk
  • 非精确搜索:相比于精确搜索,我们不计较迭代产生的步长结果是否最优,仅需要该结果能够帮助 f ( x k ) f(x_k) f(xk)有效收敛即可:
    lim ⁡ k ⇒ ∞ f ( x k ) ⇒ f ∗ \mathop{\lim}\limits_{k \Rightarrow \infty}f(x_{k}) \Rightarrow f^* klimf(xk)f
    常见的非精确方法有: Armijo \text{Armijo} Armijo准则,对 Armijo \text{Armijo} Armijo准则进行优化的 Glodstein \text{Glodstein} Glodstein准则,以及基于 Armijo \text{Armijo} Armijo准则,对 Armijo,Glodstein \text{Armijo,Glodstein} Armijo,Glodstein准则进行优化的 Wolfe \text{Wolfe} Wolfe准则
    这里不再赘述。

梯度下降方法整体介绍

梯度下降法是一种典型的线搜索方法。并且它的更新方向 P k \mathcal P_k Pk就是最速下降方向 − ∇ f ( x k ) - \nabla f(x_k) f(xk)

  • 梯度下降法也被称作最速下降法
  • 这个最速下降方向仅仅是每一个迭代步骤中向量 x k x_k xk所在位置的最速下降方向,而不是全局最速下降方向。这与贪心算法类似,是一个局部最优。如下图:
    迭代最优方向与全局最优方向
    很明显,蓝色实线是指本次迭代步骤中的最优方向;而蓝色虚线是指全局最优方向。上图描述的是二维权重特征对应的迭代过程。如果权重特征只有一维特征(一维向量;标量),对应图像表示如下:
    一维特征梯度示例
    此时函数关于 x k x_k xk的梯度 ∇ f ( x k ) = [ f ′ ( x k ) ] 1 × 1 \nabla f(x_k) = [f'(x_k)]_{1 \times 1} f(xk)=[f(xk)]1×1,在迭代过程中寻找最优方向时,仅存在两个方向进行选择:沿着坐标轴与逆着坐标轴(红色箭头)。而此时 f ′ ( x k ) > 0 f'(x_k) >0 f(xk)>0,因而我们将数轴的正方向视作梯度方向;对应地,将数轴的反方向视作负梯度方向针对当前的斜率信息,我们沿着负梯度方向更新到 x k + 1 x_{k+1} xk+1

关于梯度下降法的步长:

  • 在后续过程中将介绍梯度下降法中如何求解精确步长,以及相应的限制条件。这里加一个传送门;

  • 关于非精确搜索求解步长,这里补充一点关于各非精确搜索方法之间的一些逻辑上的关系。

    简单认识 Wolfe Condition \text{Wolfe Condition} Wolfe Condition的收敛性证明一节中介绍了使用 Zoutendijk \text{Zoutendijk} Zoutendijk定理,验证了作用于 Wolfe \text{Wolfe} Wolfe准则的步长结果可以使 { f ( x k ) } k = 1 ∞ \{f(x_k)\}_{k=1}^{\infty} {f(xk)}k=1收敛。但实际上: Zoutendijk \text{Zoutendijk} Zoutendijk定理同样可以作用于 Armijo,Glodstein \text{Armijo,Glodstein} Armijo,Glodstein准则,并证明其步长能够使 { f ( x k ) } k = 1 ∞ \{f(x_k)\}_{k=1}^{\infty} {f(xk)}k=1收敛。

    由于 Wolfe \text{Wolfe} Wolfe准则是基于 Armijo \text{Armijo} Armijo准则提出的,其本质就是: Armijo \text{Armijo} Armijo准则的基础上,那些梯度结果 ∇ f ( x k + 1 ) \nabla f(x_{k+1}) f(xk+1)过小 ϕ ( α ) \phi(\alpha) ϕ(α)点对应的 α \alpha α通过参数 C 2 \mathcal C_2 C2消除掉了
    Armijo Condition :  { ϕ ( α ) < f ( x k ) + C 1 ⋅ [ ∇ f ( x k ) ] T P k ⋅ α C 1 ∈ ( 0 , 1 ) Wolfe Condition :  { ϕ ( α ) ≤ f ( x k ) + C 1 ⋅ [ ∇ f ( x k ) ] T P k ⋅ α ϕ ′ ( α ) ≥ C 2 ⋅ [ ∇ f ( x k ) ] T P k C 1 ∈ ( 0 , 1 ) C 2 ∈ ( C 1 , 1 ) \begin{aligned} & \text{Armijo Condition : }\begin{cases} \phi(\alpha) < f(x_k) + \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha \\ \quad \\ \mathcal C_1 \in (0,1) \end{cases} \\ & \text{Wolfe Condition : }\begin{cases} \phi(\alpha) \leq f(x_k) + \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha \\ \phi'(\alpha) \geq \mathcal C_2 \cdot [\nabla f(x_k)]^T \mathcal P_k \\ \mathcal C_1 \in (0,1) \\ \mathcal C_2 \in (\mathcal C_1,1) \end{cases} \end{aligned} Armijo Condition :  ϕ(α)<f(xk)+C1[f(xk)]TPkαC1(0,1)Wolfe Condition :  ϕ(α)f(xk)+C1[f(xk)]TPkαϕ(α)C2[f(xk)]TPkC1(0,1)C2(C1,1)
    反过来说: Armijo \text{Armijo} Armijo准则相当于 Wolfe \text{Wolfe} Wolfe准则的一种极端情况:在 C 1 \mathcal C_1 C1确定划分边界的基础上,一个 α \alpha α都不去除,即: C 2 = 1 \mathcal C_2 = 1 C2=1
    同理, Glodstein \text{Glodstein} Glodstein准则也是 Wolfe \text{Wolfe} Wolfe准则中的一种情况。与 Armijo \text{Armijo} Armijo这种极端情况不同的是, Glodstein \text{Glodstein} Glodstein准则更像是一种取巧情况:在 C 1 ∈ ( 0 , 1 2 ) \begin{aligned}\mathcal C_1 \in \left(0,\frac{1}{2} \right)\end{aligned} C1(0,21)确定划分边界的基础上,选择一个合适的 C 2 ∈ ( 1 2 , 1 ) \begin{aligned}\mathcal C_2 \in \left(\frac{1}{2},1\right)\end{aligned} C2(21,1)使得斜率分别为 C 1 ⋅ [ ∇ f ( x k ) ] T P k \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k C1[f(xk)]TPk C 2 ⋅ [ f ( x k ) ] T P k \mathcal C_2 \cdot [f(x_k)]^T \mathcal P_k C2[f(xk)]TPk的直线关于斜率为 1 2 [ ∇ f ( x k ) ] T P k \begin{aligned}\frac{1}{2} [\nabla f(x_k)]^T \mathcal P_k\end{aligned} 21[f(xk)]TPk直线对称
    因为在 C 1 ∈ ( 0 , 1 2 ) \mathcal C_1 \in \begin{aligned} \left(0,\frac{1}{2}\right)\end{aligned} C1(0,21)情况下, Wolfe \text{Wolfe} Wolfe准则关于 C 2 \mathcal C_2 C2的描述范围 ( C 1 , 1 ) (\mathcal C_1,1) (C1,1)必然大于 ( 1 2 , 1 ) \begin{aligned}\left(\frac{1}{2},1\right)\end{aligned} (21,1)。因此必然能够找到这个合适的点,从而使该点情况下 Wolfe \text{Wolfe} Wolfe准则等价于 Glodstein \text{Glodstein} Glodstein准则。

关于梯度下降法的收敛速度:相比梯度下降法的收敛性,我们更关心在已知收敛的情况下,它的收敛速度情况。在上一节中对收敛速度进行了简单认识:

  • 从收敛速度判别标准的角度划分,介绍了 Q \mathcal Q Q-收敛速度与 R \mathcal R R-收敛速度;
  • 从收敛速度强度的角度划分(以 Q \mathcal Q Q-收敛速度为例),介绍了 Q \mathcal Q Q-次线性收敛/线性收敛/超线性收敛/二次收敛

而在梯度下降法中,它的收敛速度取决于目标函数 f ( ⋅ ) f(\cdot) f()自身的性质

  • 关于目标函数 f ( ⋅ ) f(\cdot) f()的基础条件:向下有界,在定义域内可微(至少局部可微)
    如果不可微,我们甚至没有办法求解梯度,更不要说梯度的更新了。

  • 要求 f ( ⋅ ) f(\cdot) f()至少是局部凸函数,并且其梯度 ∇ f ( ⋅ ) \nabla f(\cdot) f()必然服从利普希兹连续。而利普希兹连续的作用在于:目标函数梯度 ∇ f ( ⋅ ) \nabla f(\cdot) f()变化量被常数 L \mathcal L L限制住。或者说: ∇ f ( ⋅ ) \nabla f(\cdot) f()的变化不会过于剧烈

    相反,如果不对 ∇ f ( ⋅ ) \nabla f(\cdot) f()进行约束,很容易会出现梯度爆炸。因为可能存在:目标函数梯度可能在某一范围内飙升至极大

在综上条件下,可达到次线性收敛级别的收敛速度。

在上述条件的基础上,如果 f ( ⋅ ) f(\cdot) f()是一个强凸函数 ( Strong Convex Function ) (\text{Strong Convex Function}) (Strong Convex Function),可达到线性收敛级别的收敛速度。
关于凸函数的强度性质:凸函数 < < <严格凸函数 < < <强凸函数。在后续进行介绍。传送门

在第二种条件的基础上:如果 f ( ⋅ ) f(\cdot) f()仍然是一个强凸函数,并且 f ( ⋅ ) f(\cdot) f()在其定义域内二阶可微,其对应的 Hession Matrix ∇ 2 f ( ⋅ ) \text{Hession Matrix} \nabla^2 f(\cdot) Hession Matrix2f()存在并满足:

  • 其中 L \mathcal L L依然是利普希兹连续中的具有限制作用的常数; ≼ \preccurlyeq 表示矩阵小于等于; I \mathcal I I表示单位矩阵。
  • 关于 ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ ∣ ∣ x − y ∣ ∣ = ∇ 2 f ( ξ ) \begin{aligned}\frac{||\nabla f(x) - \nabla f(y)||}{||x - y||} = \nabla^2 f(\xi)\end{aligned} ∣∣xy∣∣∣∣∇f(x)f(y)∣∣=2f(ξ)详见拉格朗日中值定理。
    ∀ x , y ∈ R n : ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ ∣ ∣ x − y ∣ ∣ = ∇ 2 f ( ξ ) ≼ L ⋅ I \forall x,y \in \mathbb R^n :\begin{aligned}\frac{||\nabla f(x) - \nabla f(y)||}{||x - y||} = \nabla^2 f(\xi) \preccurlyeq \mathcal L \cdot \mathcal I \end{aligned} x,yRn:∣∣xy∣∣∣∣∇f(x)f(y)∣∣=2f(ξ)LI

同样可以达到线性收敛级别的收敛速度。

相关参考:
【优化算法】梯度下降法-总体介绍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/29045.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringCloud Gateway获取请求响应body大小

前提 本文获取请求、响应body大小方法的前提 : 网关只做转发逻辑&#xff0c;不修改请求、相应的body内容。 SpringCloud Gateway内部的机制类似下图&#xff0c;HttpServer&#xff08;也就是NettyServer&#xff09;接收外部的请求&#xff0c;在Gateway内部请求将会通过Htt…

RISC-V基础之函数调用(四)非叶函数调用(包含实例)

叶函数是指不调用其他函数&#xff0c;也不改变任何非易失性寄存器的函数2。叶函数通常是一些简单的操作&#xff0c;如数学运算或逻辑判断。叶函数的特点是可以通过模拟返回来展开&#xff0c;即不需要保存或恢复寄存器的状态。 非叶函数是指调用其他函数或改变非易失性寄存器…

电力巡检无人机助力迎峰度夏,保障夏季电力供应

夏季是电力需求量较高的时期&#xff0c;随着高温天气的来临&#xff0c;风扇、空调和冰箱等电器的使用量也大大增加&#xff0c;从而迎来夏季用电高峰期&#xff0c;电网用电负荷不断攀升。为了保障夏季电网供电稳定&#xff0c;供电公司会加强对电力设施设备的巡检&#xff0…

opencv基础-34 图像平滑处理-2D 卷积 cv2.filter2D()

2D卷积是一种图像处理和计算机视觉中常用的操作&#xff0c;用于在图像上应用滤波器或卷积核&#xff0c;从而对图像进行特征提取、平滑处理或边缘检测等操作。 在2D卷积中&#xff0c;图像和卷积核都是二维的矩阵或数组。卷积操作将卷积核在图像上滑动&#xff0c;对每个局部区…

瑞数系列及顶像二次验证LOGS

瑞数商标局药监局专利局及顶像二次验证 日期&#xff1a;20230808 瑞数信息安全是一个专注于信息安全领域的公司&#xff0c;致力于为企业和个人提供全面的信息安全解决方案。他们的主要业务包括网络安全、数据安全、应用安全、云安全等方面的服务和产品。瑞数信息安全拥有一支…

现在转行搞嵌入式找工作难不难啊?

对于应届生来说&#xff0c;嵌入式开发的经验不会有太多&#xff0c;所以要求也不会太高。 嵌入式开发常用的是C语言&#xff0c;所以需要你有扎实的功底&#xff0c;这一点很重要&#xff0c;数据结构算法&#xff0c;指针&#xff0c;函数&#xff0c;网络编程 有了上面的基…

web题型

0X01 命令执行 漏洞原理 没有对用户输入的内容进行一定过滤直接传给shell_exec、system一类函数执行 看一个具体例子 cmd1|cmd2:无论cmd1是否执行成功&#xff0c;cmd2将被执行 cmd1;cmd2:无论cmd1是否执行成功&#xff0c;cmd2将被执行 cmd1&cmd2:无论cmd1是否执行成…

源码分析——ConcurrentHashMap源码+底层数据结构分析

文章目录 1. ConcurrentHashMap 1.71. 存储结构2. 初始化3. put4. 扩容 rehash5. get 2. ConcurrentHashMap 1.81. 存储结构2. 初始化 initTable3. put4. get 3. 总结 1. ConcurrentHashMap 1.7 1. 存储结构 Java 7 中 ConcurrentHashMap 的存储结构如上图&#xff0c;Concurr…

winform控件 datagridview分页功能

主要实现页面跳转、动态改变每页显示行数、返回首末页、上下页功能&#xff0c;效果图如下&#xff1a; 主代码如下&#xff1a; namespace Paging {public partial class Form1 : Form{public Form1(){InitializeComponent();}private int currentPageCount;//记录当前页行数…

一个竖杠在python中代表什么,python中一竖代表什么

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;一个竖杠在python中代表什么&#xff0c;python中一竖代表什么&#xff0c;今天让我们一起来看看吧&#xff01; 维基百科页面是错误的&#xff0c;我已经更正了。|和&不是布尔运算符&#xff0c;即使它们是急切运算…

GODOT游戏引擎简介,包含与unity性能对比测试,以及选型建议

GODOT&#xff0c;是一个免费开源的3D引擎。本文以unity作对比&#xff0c;简述两者区别和选型建议。由于是很久以前写的ppt&#xff0c;技术原因视频和部分章节丢失了。建议当做业务参考。 GODOT目前为止遇到3个比较重大的基于&#xff0c;第一个是oprea的合作奖&#xff0c;…

13-把矩阵看作是对系统的描述

探索矩阵乘法&#xff1a;更深刻的理解与应用视角 &#x1f9e9;&#x1f50d; 引言 &#x1f4d6; 在我们进一步探讨矩阵乘法之前&#xff0c;让我们从不同的角度来理解什么是矩阵&#xff0c;以及如何将矩阵视为一个系统。我们之前已经介绍了矩阵的基本概念和运算&#xff…

手搓 自然语言模型 LLM 拆分em结构设计 网络参数对比

数据 数据集 新的em编码参数表 voc_sizehidden_sizetotaltotal Bmax_lensecondsdays65536512374865920.03749B10242560.2655361024828375040.08284B20485120.5655362048<

公检系统创新:利用校对软件优化法律文书流程

公检系统可以通过利用校对软件来优化法律文书的流程&#xff0c;从而提高效率和准确性。以下是在创新方面利用校对软件的一些方法&#xff1a; 1.自动校对和修正&#xff1a;校对软件可以与公检系统集成&#xff0c;自动检测文书中的拼写、语法和标点符号错误&#xff0c;并提供…

quill 富文本编辑器 @提及

使用插件quill-mention&#xff0c;实现在quill 富文本编辑器使用或#提及用户。 1. 安装 npm install quill-mention --save2. 官方给的示例quill-mention import "quill-mention";const atValues [{ id: 1, value: "Fredrik Sundqvist" },{ id: 2, va…

做嵌入式的门槛高吗,要996吗?

好像但凡编程序的&#xff0c;都有被称为IT工程师的可能&#xff0c;嵌入式&#xff08;软件&#xff09;自然而然在大家的眼中也是IT的范畴。作为IT届的标志性规则&#xff0c;996的确是基本每个互联网软件公司的标配。但是从我经历的几家嵌入式软件公司来看加班是必须有的&am…

【前端 | CSS】5种经典布局

页面布局是样式开发的第一步&#xff0c;也是 CSS 最重要的功能之一。 常用的页面布局&#xff0c;其实就那么几个。下面我会介绍5个经典布局&#xff0c;只要掌握了它们&#xff0c;就能应对绝大多数常规页面。 这几个布局都是自适应的&#xff0c;自动适配桌面设备和移动设备…

智慧防灾:数字孪生技术的应用

最近的“杜苏芮”“卡努”有没有对大家产生影响呢&#xff1f; 频繁发生的台风和其他自然灾害引起了人们对于灾害预防和应对的高度关注。在这种背景下&#xff0c;数字孪生作为一项前沿技术&#xff0c;为灾害预防领域提供了全新的解决方案。本文就带大家了解一下数字孪生技术…

数据要素市场之破四化建四化,拆墙又砌墙

摘要&#xff1a;8月8日&#xff0c;首届贵州科技节“2023数据要素流通关键技术论坛”在贵阳举行。此次论坛由贵州省科学技术协会指导&#xff0c;贵州省计算机学会主办&#xff0c;中国计算机学会贵阳会员活动中心、贵州轻工职业技术学院、贵州电子科技职业学院、贵州省大数据…

SSM——环境搭建、产品操作、订单操作

SSM 环境搭建与产品操作 1. 环境准备 1.1 数据库与表结构 1.1.1 创建用户与授权 数据库我们使用 Oracle Oracle 为每个项目创建单独 user &#xff0c; oracle 数据表存放在表空间下&#xff0c;每个用户有独立表空间 创建用户及密码 语法 [ 创建用户 ] &#xff1a; crea…